
A Close Look at Composition Languages

Florian Heidenreich Jendrik Johannes
Uwe Aßmann

Lehrstuhl Softwaretechnologie
Fakultät Informatik

Technische Universität Dresden, Germany
{Florian.Heidenreich,Jendrik.Johannes,Uwe.Assmann}

@tu-dresden.de

Steffen Zschaler
University of Lancaster

Computer Science Department
Lancaster, United Kingdom

szschaler@acm.org

Abstract
A large number of different composition systems and tech-
niques have been developed over the last years. To com-
pare their relative benefits and drawbacks, we need a com-
mon vocabulary for describing elements of composition sys-
tems. This paper contributes to the search for such a vo-
cabulary by taking a closer look at the structure of com-
position languages—that is, languages used for describing
compositions—based on a survey of eight different compo-
sition systems.

Categories and Subject Descriptors A.1 [Introductory and
Survey]; D.2.11 [Software Architectures]: Languages, Pat-
terns

General Terms Design, Theory

Keywords Elements of Composition Systems, Composi-
tion Languages, Terminology

1. Introduction
Decomposition and modularisation have been used success-
fully to deal with complex system development. Whenever
we decompose a system design or implementation, we also
need ways of putting the parts together again. Typically, this
is achieved by using so-called composition systems. Over
time, a large number of composition systems and approaches
have been developed. To be able to compare these, we need a
common vocabulary describing salient elements of compo-
sition systems. This paper contributes to the ongoing search
for such common vocabulary.

Composition systems and their elements have been stud-
ied for some time. (Medvidovic and Taylor 2000), were the

[Copyright notice will appear here once ’preprint’ option is removed.]

ComponentComponent

M
ap

pi
ng

 to
 a

ct
ua

l
C

om
po

ne
nt

s
M

ap
pi

ng
 to

 a
ct

ua
l

C
om

po
ne

nt
s

Composition
Description

Composition
Description

Component
Selection

Component
Selection

Component
Connection
Component
Connection

Component
Denotation

Component
Denotation

Component Model

Composition Language

In-Context
Component
Selection

In-Context
Component
Selection

In-Context
Component
Connection

In-Context
Component
Connection

Figure 1. Elements of composition languages

first to discuss the elements of a composed system. They po-
sitioned their discussion in the context of Architecture De-
scription Languages (ADLs) and found components, con-
nectors and configurations as the central elements of an
ADL. Later, (Aßmann 2003) introduced a more general
characterisation of composition systems by distinguishing
the elements of component model, composition technique,
and composition language. In this paper, we focus on the in-
ternal structure of a composition language and define a com-
mon vocabulary for elements of a composition language; to
the best of our knowledge the first attempt in this direction.

The remainder of this paper is structured as follows: In
the next section, we propose new vocabulary for analysing
composition descriptions. To evaluate whether this vocabu-
lary is sufficiently general for a diverse set of composition
systems, Sect. 3 then applies it to eight specific composition
systems. Finally, Sect. 4 concludes the paper.

2. Elements of Composition Languages
Figure 1 shows the elements of a composition language as
we see them. In the lower left corner are the actual com-
ponents. We do not care about the specific form in which
these components exist: they could be source or binary com-
ponents, or even, for example, just logical subdivisions of a
large monolithic model.

Paper to be submitted to ACoM 2008 as a long paper. 1 2008/9/15



For each of these components, we have a denotation in
our composition language. Typically, we use these denota-
tions to express compositions. Component denotations can
take many forms: They can be simple names that stand for
components, but they can also be symbols that need to be
mapped to components in more complex ways—for exam-
ple, we could use #ifdef symbols to denote components
in the configuration of a C++ program. To handle this wide
range of possible component denotations, a mapping be-
tween the denotations and the actual components is required.
If denotations are only names, this mapping is simple. How-
ever, it can become arbitrarily complex in other cases.

Compositions are described in two steps: First, we need to
select the components to be composed. Then, we need to de-
scribe how these components are to be connected. Depend-
ing on the composition system, both steps will be expressed
implicitly on the component level or explicitly on the level
of component denotations.

In the following, we define these concepts in more detail.

2.1 Component
We use the term component to refer to artefacts or groups of
artefacts that will eventually form part of the composed sys-
tem. Usually, one (ideally reusable) concern is contained in
one component. Components need not be clearly identifiable
physical entities: A single file may form a component, but
a set of related model elements from different models may
also form one component. Which information is considered
as a component depends on the concrete composition system
in use. Components can have hierarchical structure; that is,
one component may contain other components.1

2.2 Component Denotation
Component selections and connections are often expressed
using abstract representations of the actual component. We
use the term component denotation to refer to such ab-
stract representations. Component denotations can be sim-
ple names that stand for individual components, but they can
also be complex structures representing components and cer-
tain selected properties of these components.

2.3 Mapping from Denotation to Component
The meaning of component denotations is defined by map-
ping them to actual components. Such mappings can be
simple mappings that associate a symbol in the compo-
nent denotation with a single-artefact component or they
can be complex mappings that associate a single component-
denotation symbol with a group of artefacts, possibly from
different physical containers (e.g., files). Mappings can be
defined extensionally by enumerating all denotational el-
ements and their associated components or intentionally

1 The definition is generic on purpose: We focus on composition languages
and are not overly interested in the details of what constitutes a component.

through rules that compute the components associated with
a denotational element.

2.4 Component Selection
To describe how a system is composed from component,
we must first select the components to be used. We use the
term component selection to refer to this step and, in partic-
ular, to the part of a composition program expressing this.
Component Selection normally uses component denotations
to reference the components to be selected. A special kind
of component selection—in-context component selection—
is inserted directly in the definition of one component and
implicitly selects this component. It uses component deno-
tations to select additional components, though.

2.5 Component Connection
After selecting the components to be composed, we need
to specify the connection between them. We call this step
component connection and, also use this term for the part
of a composition program expressing this. Normally, com-
ponent connections use component denotations to reference
all components to be connected. A special kind of com-
ponent connection—in-context component connection—can
be used directly inside the definition of one component and
automatically references this component and specific im-
plicit connection points within it. It uses component deno-
tations to reference other components to be connected.

3. A Survey of Composition Systems
In this section, we survey a number of composition systems
and show how they fit with the vocabulary we introduced in
the previous section.

This survey serves two purposes: 1) to explain the indi-
vidual terms of our vocabulary by providing concrete exam-
ples, and 2) to evaluate our vocabulary by showing that it can
be applied to a sufficiently large set of composition systems.

3.1 Black-Box Composition
Classical, black-box component systems, such as CORBA
(Object Management Group 2008) or Enterprise Java Beans
(EJBs) (Microsystems 2001), have been available for some
time. They typically provide an infrastructure that manages
binary-format components and establishes connections and
communications between them at runtime. One important
part of this infrastructure is a naming service that allows
components to be identified through some developer-chosen
name. Components connect with each other by referencing
these names in their source code or in so-called deployment
descriptors.

Components come in the form of binary files. Depending
on the specific component systems, these are machine-
code binaries such as executables or dynamically linked
libraries in the case of CORBA or byte-code binaries as
in the case of EJB.

Paper to be submitted to ACoM 2008 as a long paper. 2 2008/9/15



Component Denotation is done using textual identifiers.
Some component systems support hierarchical name
spaces and structured names. If so-called trading services
are used, components can also be denoted by logical ex-
pressions over their properties.

Mapping Standard mapping is performed in the naming ser-
vice. This mapping is explicitly defined by registering
individual components with the naming service under a
specific name. In the case of trading services, the map-
ping is more complicated and involves some amount of
reasoning and matchmaking over the divers logical de-
scription terms. Still, however, the mapping is explicit
insofar as each component is explicitly associated with
a number of logical description terms.

Component Selection happens explicitly by naming asso-
ciated components either in calls to the naming service
or in so-called deployment descriptors that are delivered
with a component. In both cases, all associated compo-
nents are mentioned in the context of the component us-
ing them. Therefore, component selection is in-context.

Component Connection is combined with component se-
lection. Therefore, it also happens in-context.

3.2 Aspect-Oriented Programming
In Aspect-Oriented Programming (AOP) (Kiczales et al.
1997), pieces of code—advices—are distributed over a core
set of modules in a weaving process. Aspect definitions
use pointcut specifications (that is, specifications of sets of
joinpoints—points in the execution of the core modules)
to specify where advice code should be woven. What join-
points are available depends on the execution model of the
programming language of the core modules and on the spe-
cific aspect approach.

Components are the core modules and the individual pieces
of advice.

Component Denotation Advice components are denoted
by simple names that developers associate with an aspect
definition. Core-module components are denoted through
a rich set of pointcut specifications referring to individual
points in the execution of the core modules.

Mapping of advice denotations is implicit: A name used is
mapped to all the advice of an aspect definition of the
same name. Mapping core modules is also implicit: How
pointcut expressions are mapped to specific points in the
execution is hard-coded in the aspect weaver.

Component Selection Advice components are selected ex-
plicitly by making them available to the aspect weaver.
Core module components are selected explicitly through
pointcut expressions.

Component Connection is defined explicitly by associat-
ing a particular piece of advice with a particular point-

cut expression. It is in-context, because pointcuts are ex-
pressed directly in the context of an aspect.

3.3 Model Weaving
Model Weaving often refers to linking two or more models
by way of a weaving model (AMW Project Team 2008a) or
link model (Kolovos et al. 2008). A weaving model contains
a set of weaving links that link two or more model elements.

While model weaving can be applied for many model
management tasks, it can in particular be used for expressing
different kinds of model compositions. We look at two appli-
cations of model weaving for composition. In (AMW Project
Team 2008b), a weaving model links elements of models
that should be combined during composition. In (AMW
Project Team 2008c), elements of metamodels are linked
from which concrete compositions of models (instances of
the linked metamodels) are derived. Note that there might
well be other applications of model weaving where compo-
sition languages can be found and classified.

Components are models; that is, instances of a metamodel.

Component Denotation Components are denoted by IDs or
path expressions that identify single elements in the mod-
els (AMW Project Team 2008b) or metamodels respec-
tively (AMW Project Team 2008c).

Mapping is done implicitly: in (AMW Project Team 2008b)
it is resolving an ID or expression to a model element.
In (AMW Project Team 2008c) it uses the instance-of
relationship.

Component Selection is selecting models or model ele-
ments to participate in the composition. In (AMW Project
Team 2008b), single model elements are selected during
the definition of a weaving model. In (AMW Project
Team 2008c), metamodel elements are selected during
the definition of a weaving model.

Component Connection In (AMW Project Team 2008b),
component connections are explicitly defined through
the definition of weaving links in the weaving model
between the prior selected model elements. In (AMW
Project Team 2008c), the component connection is de-
fined on the meta-level.

3.4 Invasive Software Composition
Invasive Software Composition (ISC) (Aßmann 2003; Hen-
riksson et al. 2008) is a language-independent software com-
position formalism. It defines a basic component model and
basic composition operators independent of concrete lan-
guages and composition systems. On top of this, composi-
tion systems (including composition languages) can be built
for arbitrary languages. In our tool Reuseware (Reuseware
Project Team; Heidenreich et al. 2008a), we implemented
the concepts of ISC for grammar-based and metamodel-
based languages and provided a development environment

Paper to be submitted to ACoM 2008 as a long paper. 3 2008/9/15



for composition systems based on ISC. Here we classify this
implementation.

A fundamental principle of ISC is that each component—
a fragment—has an explicit composition interface through
which it can be addressed for composition. In Reuseware,
fragments are either models or programs (i.e., instances of
context-free grammars). The composition interface exposes
selected model or program elements to be accessed dur-
ing composition. Such elements are distinguished into ref-
erence points (can be accessed or extracted) and variation
points (can be replaced). Concrete compositions are defined
by composition links, linking reference and variation points
in composition programs. Composition programs can be ex-
ecuted by statically replacing variation with reference points.

A composition system for a concrete language in Reuse-
ware is created by defining how composition interfaces can
be defined for or derived from models or programs written
in that language. This definition contains rules that classify
elements in models as reference or variation points. Fur-
thermore, Reuseware allows the injection of constructs from
Reuseware’s generic composition language into a language
for which a composition system is defined. This enables def-
inition of composition programs inside of fragments.

Components A model is a component in Reuseware, if a
composition system has been defined for the model’s
metamodel. A program is a component in Reuseware, if a
composition system has been defined for the context-free
grammar of the corresponding programming language.

Component Denotation Components are denoted by their
name and by composition interfaces consisting of refer-
ence and variation points.

Mapping is implicit for a concrete composition system. It
is, however, meta-explicit since it is defined and can
be modified for each composition system separately in
Reuseware.

Component Selection happens explicitly by selecting mod-
els or programs. It can be done in an external composition
program, but also in-context, if the defined composition
system supports it.

Component Connection is explicitly defined in form of
composition links. This can be done in an external com-
position program, but also in-context, if the defined com-
position system supports it.

3.5 Template-Based Code Generation
Templates are documents that contain template parameters
instead of concrete data at certain positions. Usually, tem-
plates are just regarded as plain text and do not have to
conform to any specific language. Therefore, templates can
be defined for any kind of digital document (Java classes,
HTML pages, configuration files, etc.) and processed by a
template engine like JET, StringTemplate, JSP, Velocity or
MOFScript. Those engines take templates and data as input

and compose them into complete documents. Since all men-
tioned engines work in a similar fashion, the classification
below applies to all of them.

Components are: 1) Structured data (e.g., XML files, Java
objects, models) and 2) templates. The space of available
components is typically determined in a surrounding pro-
gram by selecting a set of templates and associating data
with named parameters in the template engine.

Component Denotation exists in two forms: templates are
denoted through a naming scheme specific to the tem-
plate engine. Data is denoted through template param-
eters, which are names sometimes associated with type
information.

Mapping happens in two steps: 1) Components are explic-
itly associated with names by a) providing named tem-
plates and b) associating structured data with named pa-
rameters in the configuration of a template engine. 2) The
template has an implicit internal mechanism for deriving
denotations from these names and the components them-
selves. For example, some template engines will make
available all elements of a data structure that are accessi-
ble through operations named getXXX(). However, these
components will be made available under a name that ex-
cludes the get.

Component Selection is performed explicitly in the context
of the templates.

Component Connection is done explicitly in-context at the
same position where the selection takes place. Selection
and connection are coupled.

3.6 Feature-Oriented Programming
In Feature-Oriented Programming (FOP) a feature is seen
as an increment in program development and functionality.
It can be used in Software Product Line Engineering (SPLE)
(Pohl et al. 2005) to define and synthesise programs based on
a unique composition of features. One system to define and
execute such compositions is AHEAD2 (Batory et al. 2004),
where each feature is a nested tuple of unary functions (also
called deltas). An example of such functions are Jak files,
which add a certain increment in functionality to an existing
Java class that shares the same name:

feature EnergySaving;

refines class MusicPlayer {
autoSuspend() {...}

}

Components are features contained in files. The features
are expressed in a language that can be composed by
the AHEAD tool suite. For example, Jak components are

2 Algebraic Hierarchical Equations for Application Design (AHEAD)

Paper to be submitted to ACoM 2008 as a long paper. 4 2008/9/15



Java classes extended with domain-specific notions for
defining refinements.

Component Denotation Components are denoted by the
names of the files they are contained in.

Mapping Within AHEAD, features are mapped implicitly
to their concrete realisation by using their names.

Component Selection happens explicitly by referencing
specific features using their names in an AHEAD com-
position program.

Component Connection is usually done in-context of the
feature module by using the denotation of the base com-
ponent that is subject for refinement.

3.7 Feature-Driven Product Derivation
Variability modelling is used to express common and vari-
able parts within Software Product Line Engineering (SPLE)
and to explicitly define constraints between variable parts—
features. Variability modelling abstracts from concrete fea-
ture realisation through feature models which is a powerful
notion to handle the increased complexity in SPLE (Czar-
necki 2005; Kang et al. 1990).

However, to build concrete products from a product line,
features have to be realised using software artefacts shared
across the product line. While variability modelling resides
in the problem space, the realisation of features is part of the
solution space. To instantiate products from a product line,
feature realisations in the solution space must be included
according to the presence of the features in a variant model;
that is, a concrete selection of features from a feature model.

To support this transition from problem space to solution
space in an automated way, a mapping from features to
software artefacts that realise the features is needed. As an
example, our tool FeatureMapper (Heidenreich et al. 2008b)
allows for both defining and interpreting such mappings in
a non-invasive way, that is, without changing the software
artefacts.

Components are artefacts in models, that is, elements from
models.

Component Denotation Components are denoted using
names in the feature models. An important property is
the ability to define constraints between components in
the feature model.

Mapping Within the FeatureMapper, denotations—features
from feature models—are explicitly mapped to concrete
realisation components by the use of a mapping model.

Component Selection happens by selecting specific fea-
tures from a feature model to build a concrete variant
of the product line.

Component Connection In its default instantiation, our
mapping framework works on components that are con-
nected in solution models. During interpretation of the

mapping model, solution artefacts are preserved and re-
moved from the solution models depending on presence
or absence of the corresponding features in a variant
model. That is, we use a special form of in-context con-
nection where every component is referenced directly.

3.8 Using IfDef Statements with the C Preprocessor
The C preprocessor (CPP) allows the definition and evalu-
ation of #define constants. These can be used for many
purposes in writing programs and managing their configura-
tions. One very typical use is exemplified in the code snippet
below:

#define USE_ENERGY_SAVING 1
...
#ifdef USE_ENERGY_SAVING
// Component that saves energy
cout << "Switched off your music player?"

<< endl;
#else
// Component that wastes energy
cout << "Want to start another device?"

<< endl;
#endif

It can be seen that this use of #define is actually quite
similar to feature-driven development as discussed above:
Here also, components are connected in-context, but se-
lected through their denotations which are given as the labels
of #define constants. Hence, this use of #define creates a
composition system in our terminology:

Components are pieces of source code surrounded by
#ifdef . . .#else or #ifdef . . .#endif.

Component Denotation is done by using #define con-
stant labels.

Mapping The mapping of these labels onto components is
given explicitly through #ifdef . . .#else . . .#endif
structures in the source code.

Component Selection happens explicitly by defining spe-
cific #define constants either in some piece of source
code or as explicit command-line parameters to the pre-
processor.

Component Connection is done completely in-context,
given by the order in which components are arranged
within source-code files.

4. Conclusions
In this paper, we have proposed new terminology for de-
scribing the structure of composition languages. We have
shown how this vocabulary can be applied to a large and
diverse collection of current composition systems. Such vo-
cabulary is an important prerequisite for comparative stud-
ies of different composition systems and composition lan-
guages.

Paper to be submitted to ACoM 2008 as a long paper. 5 2008/9/15



In applying our proposed vocabulary to a number of com-
position systems, we have found—beyond showing that it is
sufficiently general to cover a broad range of composition
systems—two important factors for distinguishing between
composition systems:

1. Richness of component denotations. Component denota-
tions used in different composition systems range from
simple names that stand for specific components to com-
plex structures providing additional information about
a component and its interface (e.g., feature models or
component interfaces in invasive software composition).
The more complex a component denotation, the more
precisely can composition programs be expressed. Less
complex denotations, on the other hand, are much easier
to use for describing compositions.

2. Definition of the mapping between denotations and com-
ponents. We have found that different composition sys-
tems use different techniques for defining a mapping
between denotations and actual components. There are
three possibilities:

(a) Explicit mappings, where users of the composition
language explicitly relate denotations and compo-
nents in composition programs (cf. Sects. 3.1, 3.5,
3.7, 3.8);

(b) Implicit mappings, where the relation is implicitly
defined in the composition system (cf. Sects. 3.2, 3.3,
3.5, 3.6); and

(c) Meta-explicit mappings, where the relation between
denotations and components is provided explicitly,
but not individually for each composition program,
but rather as a set of rules that can be applied to many
different composition programs (cf. Sect. 3.4).

Based on these findings, it is now an interesting question
to study how these design decisions influence the usability of
composition languages. What are good criteria for selecting
one or the other type of denotation or mapping strategy for a
specific composition language or even project?

Acknowledgments
This research has been co-funded by the European Commis-
sion within the FP6 project MODELPLEX contract number
034081 and by the German Ministry of Education and Re-
search (BMBF) within the project feasiPLe.

References
AMW Project Team. Atlas model weaver, 2008a. URL http:

//eclipse.org/gmt/amw/. Last accessed August 08, 2008.

AMW Project Team. Amw use case – aspect oriented mod-
eling, 2008b. URL http://www.eclipse.org/gmt/amw/

usecases/AOM/. Last accessed August 08, 2008.

AMW Project Team. Amw use case – merge of geographical
data (gml) with election statistics into svg, 2008c. URL http:

//www.eclipse.org/gmt/amw/usecases/mergeSVG/. Last
accessed August 08, 2008.

Uwe Aßmann. Invasive Software Composition. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software Engineer-
ing, 30(6):355–371, 2004. doi: 10.1109/TSE.2004.23.

CPP. The C preprocessor. URL http://gcc.gnu.org/

onlinedocs/cpp/. Last accessed August 08, 2008.

Krzysztof Czarnecki. Overview of Generative Software Develop-
ment. In Proc. Int’l Workshop on Unconventional Programming
Paradigms 2004 (UPP’04), volume 3566 of LNCS, pages 326–
341, Le Mont Saint Michel, France, September 2005. Springer.

Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and
Steffen Zschaler. On language-independent model modularisa-
tion. Transactions on Aspect-Oriented Development, October
2008a. Special Issue on Aspects and MDE (to appear).

Florian Heidenreich, Jan Kopcsek, and Christian Wende. Fea-
tureMapper: Mapping Features to Models. In Companion
Proceedings of the 30th Int’l Conf. on Software Engineering
(ICSE’08), pages 943–944, New York, NY, USA, May 2008b.
ACM. doi: 10.1145/1370175.1370199.

Jakob Henriksson, Florian Heidenreich, Jendrik Johannes, Steffen
Zschaler, and Uwe Aßmann. Extending grammars and meta-
models for reuse: the Reuseware approach. IET Software, 2(3):
165–184, 2008. doi: 10.1049/iet-sen:20070060.

K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Techni-
cal Report CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, 1990.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Mat-
suoka, editors, 11th European Conference on Object-Oriented
Programming (ECOOP’97), volume 1241 of LNCS, Jyväskylä,
Finland, June 1997. Springer.

Dimitrios S. Kolovos, Richard F. Paige, Louis M. Rose,
and Fiona A. C. Polack. Epsilon. Department of
Computer Science, University of York, 2008. URL:
http://epsilonlabs.wiki.sourceforge.net/Book.

Nenad Medvidovic and Richard N. Taylor. A classification and
comparison framework for software architecture description lan-
guages. IEEE Transactions on Software Engineering, 26(1):70–
93, January 2000.

Sun Microsystems. Enterprise JavaBeans Specification, Version
2.0. Final Release, August 2001.

Object Management Group. CORBA components. OMG Doc-
ument, January 2008. URL http://www.omg.org/docs/

formal/08-01-08.pdf.

Klaus Pohl, Günter Böckle, and Frank van der Linden. Software
Product Line Engineering: Foundations, Principles, and Tech-
niques. Springer, 2005. ISBN 978-3-540-24372-4.

Reuseware Project Team. Reuseware composition framework web-
page. URL http://reuseware.org/. Last accessed August
08, 2008.

Paper to be submitted to ACoM 2008 as a long paper. 6 2008/9/15


