
Towards a Generic Layout Composition Framework for
Domain Specific Models

Jendrik Johannes
∗

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
jendrik.johannes@tu-dresden.de

Karsten Gaul
Technische Universität Dresden

Institut für Software- und Multimediatechnik
D-01062, Dresden, Germany
karsten.gaul@gmx.net

ABSTRACT
Domain Specific Models with graphical syntax play a big
role in Model-Driven Software Development, as do model
composition tools. Those tools however, often ignore or de-
stroy layout information which is vital for graphical models.
We believe that one reason for the insufficient support for
layout information in model composition tools is the lack
of generic solutions that are easy to adapt for new graph-
ical modelling languages. Therefore, this paper proposes
a language-independent framework for layout preservation
and composition as an extension to existing model composi-
tion frameworks. We describe the single components of the
framework and evaluate it in combination with the Reuse-
ware Composition Framework for layout compositions in two
different industrial used languages. We discuss the results
of this evaluation and the next steps to be taken.

1. INTRODUCTION
In Model-Driven Software Development (MDSD) different
graphical Domain Specific Models defined in different Do-
main Specific Modelling Languages (DSMLs) are used in
combination. MDSD approaches promise high flexibility
with regard to the DSMLs that are used and how these
are combined. Using metamodelling tools, developers can
create new DSMLs when required and integrate them into
their MDSD process by defining model transformations and
compositions. Different technologies are available for model
transformation and composition which are language inde-
pendent. That is, they can be used with any DSML that is
defined by a metamodel they understand.

A drawback of such language-independent approaches is that
they handle the semantic models, but rarely support the
preservation and composition of layout information. This,
however, is an important issue, because the outcome of a
model composition is seldom the final system which is (like a
compiled piece of code) processed by machines, but another
model to be viewed and edited by developers. Thus, we ar-
gue that layout preservation and composition is crucial for
the acceptance of MDSD. Currently, however, approaches
that are easy to adapt for new DSMLs are missing.

This paper proposes such an approach for compositions of
models within arbitrary graphical DSMLs (Section 2). It

∗This research has been co-funded by the European Com-
mission in the 6th Framework Programme project Mod-
elplex contract no. 034081 (www.modelplex.org).

provides an implementation of the approach in an extensi-
ble framework that is based on the Eclipse Modeling Frame-
work (EMF) [18]. Our framework can be used with arbitrary
graphical DSMLs defined in EMF’s metalanguage Ecore [18].
It can be connected to arbitrary EMF-based model com-
position engines that fulfill a number of properties we will
discuss. One example of such an engine is the Reuseware
Composition Framework [8] with which we evaluated our
approach. We performed an evaluation of our framework
with two different DSMLs (Section 3) used in industry. Af-
terwards, in Section 4, we discuss lessons learned and future
extensions to broaden the scope of our framework. We look
at related work in Section 5 and conclude in Section 6.

2. LAYOUT COMPOSITION
In this section we introduce the concepts behind our frame-
work and, based on that, the different components of it.
First (Section 2.1), we specify the scope of our work by
defining criteria for the DSMLs and the model composition
frameworks we support. Second (Section 2.2), we introduce
the Mental Map concept on which we base our approach.
Third (Section 2.3), we describe the different steps of our
layout preservation and composition process and show vari-
ability within the different steps which can be implemented
in individual components in our framework. Fourth (Sec-
tion 2.4), we introduce the components we implemented.

2.1 Criteria for Supported DSMLs and Model
Composition Frameworks

A DSML has to fulfill the following properties to work with
our approach:
Requirement 1 The DSML has to have a graphical (dia-
grammatical) syntax.1

Requirement 2 The DSML has to be defined in Ecore.2

The following is required of a model composition framework
to interoperate with our layout composition framework.
Requirement 3 The composition scripts for models have
to have a graphical (diagrammatical) syntax.1

Requirement 4 The composition framework needs to be
able to expose which item in a composition script refers to
which input model.1

1Section 4 discusses how these restrictions can be loosened
2This restriction applies if our implementation is reused di-
rectly. Conceptually, our framework can be ported to an-
other modelling environment.



Layout Composit ion (LC)

Layout Information
Gathering (LC1)

Overlap 
Elimination (LC3)

Layout 
Merge (LC2)

Layout 
Persisting (LC4)

Source Information
Provider

Target Information
Provider

Comparator Arranger Materialiser

(a)

(b)

Figure 2: (a) Model and layout composition process and (b) Layout composition components of our framework

2.2 Mental Map
Naturally, when different diagrams are composed some ad-
justment of the layout is required because in many cases
nodes of the former separated diagrams will overlap in the
composed diagram. A naive solution would be to perform
a complete relayout of the diagram using a layouting algo-
rithm such as planarity [17] as shown in Figure 1.

This however, destroys the original neighborhood relation-
ships between nodes. The literature calls these relationships
the user’s Mental Map [4] of the diagram. The importance
of the Mental Map in MDSD is also stressed in [20]. One
can think of the Mental Map as a road map, where the scale
might vary, but the relations between elements do not. A
user subconsciously creates his Mental Map of a diagram
when arranging the icons in a certain way. Thus, when
the layout is adjusted to eliminate overlaps the Mental Map
should be preserved. There are three rules to be met in order
to preserve the Mental Map [4]:

Goal 1: disjointness of nodes
Goal 2: keep the neighborhood relationship of the nodes
Goal 3: compact design

Naively applying layouting algorithms often violates one or
more of these goals. In Figure 1, for example, the neigh-
borhood relationship is not kept and, therefore, the result
leaves the user disoriented.

2.3 Layout Composition Process
Figure 2a illustrates the model and layout composition pro-
cess. The input to the process consists of one or more graphi-
cal models and one graphical composition script (Figure 3a).
In the first step, the model composition engine—in our case
Reuseware—interprets the composition script to perform the
semantic model composition (MC). After that, our frame-
work performs the layout composition (LC) with adjustment
in four major steps. First (LC1), it collects the layout infor-
mation from the input models and the composition script.
Second (LC2), this information is merged in a Mental Map
preserving fashion. For this, our framework needs to gather
information from the underlying modelling and model com-
position frameworks (Requirement 4). Third (LC3), the

D C

A B

D

C

A
B

Figure 1: An application of the planarity algorithm
that destroys the developer’s Mental Map

merged layout data has to be adjusted to remove overlaps in
a way that preserves the Mental Map (Goals 1–3). Fourth
(LC4), the adjusted layout information has to be connected
to the composed model, which again requires access to the
underlying modelling technology.

In the first layout composition step (LC1) we collect all lay-
out information. The collected information consists of (1)
the layout information of each input diagram, (2) the layout
information of the composition script and (3) the relation
between nodes in the composition script and the input dia-
grams (Requirement 4).

The merging process (LC2) is steered by the layout of the
composition script. The developer expects the composed
model to be laid out according to his Mental Map of the
composition script (cf. Figures 3a and 3b). Thus, using the
information about how the nodes of the composition script
relate to input diagrams, we move all the nodes of each single
input diagram in correspondence to the node representing
that diagram in the composition script. This is illustrated
in Figure 3b where the element sets are arranged according
to the composition script in Figure 3a. Because all nodes
of one diagram are moved with the same vector, the Men-
tal Map of the individual diagrams is preserved. Therefore,
Goal 2 is reached. Since the positioning is based on the
composition script, Goal 3 is also reached. The composed
diagram however, may contain overlaps since the nodes rep-
resenting models in the composition script are much smaller
than the models themselves, which violates Goal 1.

To meet Goal 1, layout adjustment is performed in the next
step (LC3). Here, we can make use of existing layout algo-
rithms, where we treat all nodes that belong to one input
model as a whole rather than adjusting each node individ-
ually (cf. adjustment from Figure 3b to Figure 3c). This
is similar to the scaling of node clusters presented in [20].

Input Model

Composition 
Script

Node Representing 
Model in Script

(b)

(c)(a)

1 2

3

3

1 2

Figure 3: (a) Input of a model composition: 3 input
models and 1 composition script (b) Composition
result without overlay elimination (c) Composition
result after the application of Horizontal Sorting



While a number of algorithms could be used (e.g., the ones
discussed in [4]) we implement Horizontal Sorting [11] and
Uniform Scaling [4] so far. Horizontal Sorting, as its name
implies, starts at the left side of the diagram and moves
overlapping fragments in x direction until they do not over-
lap anymore (Figure 3c). Uniform Scaling is based on the
following equation: (a+s*(x-a), b+s*(y-b)). The point (a,b)
is the center point and (x,y) is the location of the model el-
ement set that needs to be moved. The factor s is a scale
factor used to define the distance the model elements are
moved by. For automatisation purposes, (a,b) should not
be chosen by the user—it can be computed from the merged
diagram before adjustment (outcome of LC2, cf. Figure 3b).

In the last step (LC4) the computed layout information has
to be materialised in the diagram of the composed model.
Here, access for modifying this diagram has to be provided
by the modelling technology that was used.

2.4 Framework Components
The previous section described the steps our layout com-
position framework performs. These steps can be imple-
mented in individual components, which could be exchanged
depending on specific demands of one composition. The dif-
ferent components are illustrated in Figure 2b. In the follow-
ing, we give details of the functionality of these components
and present what we have implemented so far.

Different component combinations can be used to achieve
different results. We summarize possible combinations at
the end of this section. In Section 3 we then evaluate what
the benefits and drawbacks of certain combinations are.

2.4.1 Source Information Provider (LC1)
An input model consists of an arbitrary number of nodes
and, for a user friendly layout algorithm that obeys the rules
of the Mental Map, we have to know about the width and
height of these nodes. More precisely, width and height of
the bounding box of the whole input model is needed (x and
y values are not important here). An Information Provider
walks through the diagram structure and gathers the re-
quired data. The Source Information Provider depends on
the layout format used for the input diagrams.

We implemented two Source Information Providers for two
layout formats commonly used in EMF, which are the GMF
Notation Model [7] and the TOPCASED Diagram Inter-
change format [19]. The GMF Notation Model is widely
spread, because it is used by all DSMLs created with the
GMF—a generative DSML development framework. TOP-
CASED is an alternative framework with similar functional-
ity which currently offers a set of high quality UML editors.
There are efforts to align both frameworks to obtain a com-
mon layout format in the EMF (possibly aligned with an up-
graded version of the Diagram Interchange OMG standard
[15]). In general, the Information Providers implemented by
us already cover a huge amount of diagram syntaxes used in
EMF. Our experience showed that an Information Provider
can be implemented within hours.

2.4.2 Target Information Provider (LC1 and LC2)
Another Information Provider is required to obtain the lay-
out information of the nodes in a composition script that

represent input models. We call this a Target Information
Provider because it determines the main structure of the
composed diagram (cf. Figures 3a and 3b). It gathers the x
and y values of the geometrical shapes that represent the in-
put models in the graphical script. Height and width are not
that important here. This Information Provider depends on
the layout format used for composition scripts in the sup-
ported composition engine.

In Reuseware, composition scripts (called composition pro-
grams) are created in a graphical editor which was developed
with GMF. Consequently, we implemented one Target Infor-
mation Provider that depends on the GMF Notation Model
for layout information and on Reuseware to obtain the re-
lationship information (Requirement 4) between nodes in a
composition script and input models.

2.4.3 Comparator (LC3)
A Comparator ensures that layout composition is performed
in a deterministic order. It is required when the semantic
model composition does not depend on a deterministic order,
but the layout adjustment does.

We implemented one Comparator that sorts input models
according to their x position in the composition script (i.e.,
the one given by the Target Information Provider). This is
needed for the Horizontal Sorting algorithm but was also
used for the Uniform Scaling algorithm to have a determin-
istic order (although any other deterministic Comparator
could be used here).

2.4.4 Arranger (LC3)
An Arranger does the actual layout adjustment if overlaps
exist. Therefore, it first checks for overlaps and decides if ad-
ditional adjustment is required. An Arranger could do these
steps repetitively, depending on the adjustment algorithm.
That is, if after one adjustment overlaps do still exist, it can
do another algorithm run.

As mentioned in Section 2.3, we implement Horizontal Sort-
ing and Uniform Scaling as two different Arrangers. De-
pending on the concrete composition, both algorithms yield
results of different quality, as we will discuss in Section 3.

2.4.5 Materialiser (LC4)
The last step is materializing the computed layout in an
actual diagram. This is realized by a Materialiser.

Materialisers also have to be implemented for each layout
format that should be supported. Thus, we implemented
one for GMF and one for TOPCASED.

In the next section we evaluate our framework in combina-
tion with Reuseware using two graphical DSMLs, where one
is utilising GMF and one TOPCASED as layout format.
For that, different combinations of the mentioned compo-
nent implementations are used. We call such a combina-
tion a layout composition strategy. The Source Information
Provider and the Materialiser are always determined by the
format used by the corresponding DSML. As Target Infor-
mation Provider and Comparator we always use the only
implementation we provided so far. The Arrangers however



Figure 4: (a) A CIM model (b) The same model
represented in a Reuseware composition script

can be varied (no Arranger, Horizontal Sorting, Uniform
Scaling). We compare the different possible combinations
and discuss the results.

3. EVALUATION
In this section we evaluate our layout composition frame-
work on two different model compositions that were real-
ized with the Reuseware Composition Framework in earlier
works: [8] in Section 3.1 and [10] in Section 3.2. We ap-
ply different configurations of our layout composition frame-
work and compare the results. Afterwards we discuss what
we have achieved so far and what the next steps towards a
generic layout composition framework are in Section 4.

3.1 Common Information Model DSML
The first model composition uses models from the telecomu-
nications domain defined with a DSML that implements the
Common Information Model (CIM) standard [3]. A meta-
model defined in Ecore and a graphical GMF-based editor
for the language were developed by Telefonica R&D and
Xactium in the MODELPLEX research project [5]. In the
following we concentrate on the layouting aspects of the
model compositions. More details of the semantic model
composition can be found in [10] and online1.

Figure 4 shows (a) the CIM model BuiltInEthernetHub in
the CIM GMF editor and (b) the representation of that
input model in a composition script in Reuseware’s com-
position script editor. The node in the composition script
has different circles attached to it which are called Ports
in Reuseware. Each Port points at a number of model el-
ements in the input models that are modified during the
model composition. For more details please consult [8] and
the Reuseware website2.

CIM models are composed in different stages, where each
stage represents a different level of abstraction. The origi-
nal input models (e.g., Figure 4a) developed with the men-
tioned GMF editor reside on Level 1. A composition script
that composes these models defines a Level 2 composition.
A composition script, that uses the results of Level 2 com-
positions as input models is located on Level 3 and so on.

The BuiltInEthernetHub (Figure 4a) is a model of Level 1.
To compose the network model EthernetIPInterface, a
composition script on Level 2 was created which is depicted

1http://reuseware.org/index.php/Abstract CIM DSLs
2http://reuseware.org

Figure 5: (a) Composition script for the EthernetIP-

Interface model (b) Composed model

in Figure 5a. In addition to the BuiltInEthernetHub the
script contains the input models Core and IP. The Core is
an empty model into which CIM model elements are com-
posed. Thus, it holds no graphical representation and layout
information. The IP contains only one model element and
consequently one graphical node.

We execute the composition defined in Figure 5a with three
different layout composition strategies. Each strategy uses
the Source Information Provider and Materialiser developed
for GMF, the Target Information Provider that works for
Reuseware’s composition scripts and the Comparator. The
first strategy applies no layout adjustment, the second uses
Horizontal Sorting and the third Uniform Scaling.

No layout adjustment Figure 5b shows the diagram that
results from the composition of Figure 5a without layout
adjustment. We observe that the elements overlap (Goal 1)
since the diagrams are bigger than the icons in the composi-
tion script (Figure 5a). This destroys the positioning in the
developer’s Mental Map (Goal 2) and only Goal 3 is reached.

Horizontal Sorting In Figure 6a Horizontal Sorting is used
for layout adjustment. We observe, that the overlap has
been removed. The overlapping nodes have been moved
along the x-axis. While Goal 1 is reached here, Goal 2 is
not completely satisfied. The IP model which is located be-
low the BuiltInEthernetHub in Figure 5a is now located on
the right of it.

Uniform Scaling In Figure 6b we utilise Uniform Scaling
(with a scale factor s=2). Here, the mental map is well
preserved and all three Goals are satisfied.

Figure 6: Adjusted layout: (a) Horizontal Sorting
(b) Uniform Scaling



Figure 7: Level 3 composition script

We have seen that the layout adjustment is necessary even
for a small model to avoid overlaps while preserving the
Mental Map. While Horizontal Sorting performs worse than
Uniform Scaling concerning the exactness of neighborhood
relations, it yields a more compact design. Thus, it could
still be an acceptable option here.

A more complex composition is shown in Figure 7. It is a
Level 3 CIM abstraction that reuses results of earlier com-
positions on Level 2 which are the EthernetIPInterface

from above as well as the models ADSLStaticIPInterface

and System. We apply two different layout strategies using
the two different algorithms to examine how they behave for
larger models and how our framework behaves in a staged
model composition.

Figure 8a (Horizontal Sorting) and Figure 8b (Uniform Scal-
ing) show the different composition results. In principle,
the same observations as above can be made, but the men-
tioned issues become more obvious. In the case of Horizontal
Sorting, everything is aligned along the x-axis, while it was
aligned along the y-axis in Figure 7. In the case of Uni-
form Scaling, the problem of less compact design increases.
Although we used only a small scale factor (s=2), the dia-
gram is getting relatively large. This is due to the fact that
all element sets are moved uniformly in different directions,
resulting into unused spaces between smaller element sets.

In Figures 8a and 8b we can also observe that a layout com-
posed in an earlier step (i.e., the layout of EthernetIPInter-
face which is composed by Figure 5a) is not modfied any-
more. Thus, different strategies can be applied at different
stages of a composition. In Figures 8b, Horizontal Sorting
was applied to compose EthernetIPInterface which keeps

Figure 8: Composed Level 3 diagram: (a) Horizontal
Sorting (b) Uniform Scaling

Figure 9: A business process extension modelled as
UML activity in TOPCASED [19]

the overall layout more compact compared to the case where
Uniform Scaling is applied everywhere (not shown).

3.2 UML Activities for Business Processes
Business processes as presented in [6] can be modelled as
UML activity models. A core process can be extended with
new sub-processes by composing those models with Reuse-
ware as we did in [8]. An example of a sub-process is shown
in Figure 9. When it is composed into a larger core activity,
the initial and final nodes (black circles) are replaced with
other nodes in the core—integrating both activities.

We tested our layout composition framework with the mod-
els of [8]. This time, we had to use the TOPCASED specific
components, since the diagrams were created with the TOP-
CASED UML editor. The adjustment worked in the same
manner as for the CIM models confirming the results about
strength and weaknesses of the algorithms and demonstrat-
ing that the framework can be used with other DSMLs.

4. NEXT STEPS
This section discusses the results of the last section and
points out future work to improve our layout composition
framework. We have seen throughout the evaluation that
there is not one best strategy for layout adjustment. Which
is the best strategy rather depends on many factors from
the sizes of the input models up to the personal taste of the
developer and how he uses the DSML at hand. A possibil-
ity is to make the developer aware of the different strategies
and let him experiment with different ones—as we did in the
evaluation. However, if many compositions are defined, this
extra work of evaluating (and re-evaluating) all strategies
each time a composition or one of its input models changes
can become a tedious task. It should be possible to select
strategies automatically based on further analysis of the in-
put models or by allowing the developer to specify criteria
for this selection. This requires analysis of a broader exam-
ple space in the future.

Since we made certain assumptions about the models and
the model compositions when we decided how to preserve the
Mental Map, there are cases that are not so well supported
by our framework at the moment. Consider the UML activ-
ity example (Figure 9). Here the nodes Start, Success and
Failure are replaced by others during a composition. Cur-
rently, the layout information about these replaced nodes is
always discarded. However, there are also examples where
it seems to be more intuitive to position the replacing node
at the position of the replaced node—for instance, if only
one node is inserted and not a whole diagram. This however
highly depends on the concrete kinds of compositions that
are performed. If and how the best strategy can be deter-
mined automatically will have to be explored by evaluating
different kinds of compositions. In addition, if a replacing



node should take the position of the replaced node, the com-
position framework needs to reveal the relationship between
such nodes (extension of Requirement 4).

Another thing we have not considered yet are diagrams that
do not follow the simple node and edge paradigm but are
more restrictive (e.g., UML sequence charts). In such cases,
the layout adjustment possibilities are limited on the one
hand, but might also not be necessary on the other hand
(because a “good” layout is enforced by the nature of the
graphical formalism). More investigations are required here.

A point that might hinder the combination with other model
composition engines is the requirement for a graphical com-
position script (Requirement 3), since many such tools come
with textual specification languages. In principle, such lan-
guages could also be handled by translating text positions
(e.g., the order in which input models are referenced) into
graphical layout information (by a specific Target Informa-
tion Provider). Consequently, to support a textual language,
a useful translation has to be found.

5. RELATED WORK
Many modelling tools do not pay proper attention to layout
information today. Graphical modelling tools and frame-
works such as GMF [7], TOPCASED [19], Rational Soft-
ware Architect [9], Borland Together [2], MagicDraw [13]
or Fujaba [12] offer facilities which apply layout algorithms
to whole or partial diagrams. Despite the fact that these
algorithms do not consider the Mental Map of the existing
layout and often fail to produce viable results for large di-
agrams, the tools also do not offer facilities to preserve or
transfer layouts from one diagram to another. MDSD pro-
cess tools such as openArchitectureWare [14] or AndroMDA
[1] completely ignore layout information when composing or
transforming models.

Our work focuses on model compositions that are performed
between models defined in one DSML. Another important
discipline is model transformation between different DSMLs.
Here, layout information is also seldom handled and also
not considered in standardization efforts such as QVT [16].
Pilgrim et al. [20, 21] used trace links created during a model
transformation to obtain layout information from the source
diagram to layout the target diagram. They however do not
discuss what the limitations for the model transformation
are they support and only considered Uniform Scaling to
remove overlaps so far.

6. CONCLUSION
We presented a generic layout composition framework to im-
prove layout preservation in MDSD. The architecture of the
framework and the components we implemented were intro-
duced and utilised in several examples. These experiments
showed that the provided solutions are a great improvement
over current practice. They also showed, however, weak-
nesses and limitations of our work so far. Based on this, we
identified challenges as a base for further work to improve
the quality and genericity of the presented layout compo-
sition framework. In the future, we will tackle these chal-
lenges and perform more experiments on different DSMLs
with distinct graphical syntaxes.

7. REFERENCES
[1] AndroMDA Development Team. AndroMDA.

http://www.andromda.org/, 2009.

[2] Borland. Borland Together. http://www.borland.com/
us/products/together/, 2009.

[3] Distributed Management Task Force Inc. (DMTF).
Common Information Model Standards.
http://www.dmtf.org/standards/cim/, 2008.

[4] P. Eades, W. Lai, K. Misue, and K. Sugiyama.
Preserving the mental map of a diagram. Research
Report IIAS-RR-91-16E, 1991.

[5] A. Evans, M. A. Fernández, and P. Mohagheghi.
Experiences of Developing a Network Modeling Tool
Using the Eclipse Environment. In Proc. of
ECMDA-FA’09, volume 5562 of LNCS. Springer, 2009.

[6] M. Fritzsche, W. Gilani, C. Fritzsche, I. T. A. Spence,
P. Kilpatrick, and T. J. Brown. Towards Utilizing
Model-Driven Engineering of Composite Applications
for Business Performance Analysis. In Proc.
ECMDA-FA’08, volume 5095 of LNCS. Springer, 2008.

[7] GMF Development Team. Graphical Modeling
Framework. http://www.eclipse.org/gmf/, 2009.

[8] F. Heidenreich, J. Henriksson, J. Johannes, and
S. Zschaler. On Language-Independent Model
Modularisation. In Transactions on Aspect-Oriented
Development, LNCS. Springer, 2009. To Appear.

[9] IBM. Rational Software Architect. http://ibm.com/
software/awdtools/architect/swarchitect/, 2009.

[10] J. Johannes, S. Zschaler, M. A. Fernández, A. Castillo,
D. S. Kolovos, and R. F. Paige. Abstracting Complex
Languages through Transformation and Composition.
In Proc. of MoDELS’09, LNCS. Springer, 2009.

[11] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
adjustment and the mental map. Research Report
ISAS-RR-94-6E, 1991.

[12] U. Nickel, J. Niere, and A. Zündorf. The FUJABA
Environment. In Proc. of ICSE’00. IEEE, 2000.

[13] No Magic, Inc. MagicDraw.
http://www.magicdraw.com/, 2009.

[14] oAW Development Team. openArchitectureWare.
http://www.openarchitectureware.org/, 2009.

[15] Object Management Group. Diagram Interchange
Specification, v1.0, 2006.
http://www.omg.org/cgi-bin/doc?formal/06-04-04.

[16] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation, 2008.
http://www.omg.org/cgi-bin/doc?formal/08-04-03.

[17] R. C. Read. A New Method for Drawing a Planar
Graph Given the Cyclic Order of the Edges at Each
Vertex. Congressus Numerantium 56, 1987.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. Eclipse Modeling Framework, 2nd Edition.
Pearson Education, 2008.

[19] TOPCASED Development Team. TOPCASED
Environment. http://www.topcased.org, 2009.

[20] J. von Pilgrim. Mental Map and Model Driven
Development. In Proc. of LED’07. EASST, 2007.

[21] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and
Y. Berbers. Constructing and Visualizing
Transformation Chains. In Proc. of ECMDA-FA’08,
volume 5095 of LNCS. Springer, 2008.


