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Abstract. Model-Driven Software Development is based on standard-
ised models that are refined, transformed and eventually translated into
executable code using code generators. However, creating plain text from
well-structured models creates a gap that implies several drawbacks: De-
velopers cannot continue to use their model-based tool machinery, rela-
tions between model elements and code fragments are hard to track and
there is no easy way to rebuild models from their respective code.
This paper presents an approach to bridge this gap for the Java program-
ming language. It defines a full metamodel and text syntax specification
for Java. From the latter a parser and a printer are generated to perform
the conversion between text and models in both directions. Through this,
Java code can be handled like any other model. The implementation is
validated with large test sets, example applications are shown, and future
directions of research are discussed.

1 Introduction

The goal of Model-Driven Software Development (MDSD) is the (semi-)automa-
tic generation of software systems from models across multiple stages [1, 2]. That
is, not only code—such as Java source code—is generated from models, but also
models are transformed and refined towards other models. Using a standardised
metalanguage, language-independent tools can be utilised to manipulate and
analyse models defined in different modelling languages. Since a metamodel de-
fines types and constraints for sentences (i.e., models) of a language, all model
manipulations done by different tools can be checked for correctness.

As described above, almost all transformations in an MDSD process pro-
duce structured and typed data, even on the level of abstract system modelling
(e.g., Use Case modelling). However, the last transformation, from models to
code artefacts, is often done in a weak structured and untyped manner using
string processing template engines. This is a paradox since type checking and
correctness is most important when producing compilable artefacts.

In addition, many modellers—in particular the ones involved in the last steps
of an MDSD process—are also programmers. Today’s common practices, such
as annotating models with (again untyped) Java code, show that a tighter inte-
gration between modelling and programming languages is often desired.



We argue that there is a gap between modelling and programming languages
that is worth closing to tackle many of todays problems in the last steps of
MDSD processes. The gap is caused by the fact that modelling and program-
ming languages are too often regarded as different things. If a programming
language like Java would be handled equally as other modelling languages, the
issues discussed above could be addressed: existing modelling tools could han-
dle Java programs as they handle other models—structured and typed—instead
of treating them as plain text. By using metamodelling tools for extension and
reuse of language specifications, Java (or parts of Java) can be integrated with
other modelling languages. As a consequence Java can be utilised as any other
modelling language.

To close the gap for the Java programming language, we propose the Java
Model Parser and Printer (JaMoPP). JaMoPP leverages Java to a modelling
language by providing the following:

1. JaMoPP defines a complete metamodel for Java that covers the whole lan-
guage. The metamodel is defined in the commonly used metamodelling lan-
guage Ecore [3] which allows it to be processed by metamodelling tools for
custom modification, extension or reuse.

2. JaMoPP defines a text syntax that conforms to the Java language specifi-
cation and from which a parser—to create instances of the metamodel from
Java source code—and a printer—to transform instances of the metamodel
into Java source code—are generated. Similar to the metamodel, the text
syntax—being a model on its own—can be customised, extended and reused
and the tooling (i.e., parser and printer) can be regenerated.

3. JaMoPP’s Java metamodel reflects the static semantics of Java through
cross-references between model elements. These references are established af-
ter parsing by an analysis mechanism that implements the specifics of Java’s
static semantics. This mechanism is implemented in a modular fashion to
support customisation, extension and reuse.

With JaMoPP, Ecore-based modelling tools can process Java files in the same
manner they process other models. Additionally, the same tools can be applied
to the Java metamodel itself. We explore different scenarios later in this paper.

The paper is structured as follows: Sect. 2 gives details about the design and
implementation of JaMoPP. This includes our metamodel for the Java language,
the text syntax specification, the static semantics analysis, the integration of
compiled Java classes and details about the extensive test suite that was used to
validate our implementation. Section 3 contains five example applications that
demonstrate the benefits of representing Java source code as models. We compare
our work to existing approaches in Sect. 4 and draw conclusions in Sect. 5.



2 JaMoPP in Detail

This section introduces the different parts of JaMoPP in detail. In Sect. 2.1
we discuss our Ecore metamodel for Java. Section 2.2 presents details of an
EMFText [4] syntax specification for Java and Sect. 2.3 introduces a class file
reader. Afterwards, Sect. 2.4 shows how parsing and printing is integrated in
the resource handling of the Eclipse Modeling Framework (EMF) [3] to provide
transparent access to the Java models for arbitrary tools (e.g., editors or trans-
formation engines) and explores the static semantics analysis implementation.
Finally, Sect. 2.5 gives details about the process used to test the different parts
of JaMoPP.

2.1 Java Metamodel

There is a huge amount of tools that operate on Java programs and therefore
implicitly or explicitly operate on instances of the Java metamodel. Despite the
great variety of software that depends on the Java metamodel, it turned out few
have an explicit representation of it. On the other hand, there are many language-
independent modelling tools that could work on Java programs if an explicit
metamodel defined in a standard metamodelling language as Ecore would exist.
These tools could then not only be used to work on Java programs, but also to
customize the metamodel itself (e.g., to realise Java extensions). Such an explicit
Java metamodel needs to reflect the complete syntax and static semantics of
Java. Static semantics can be represented in a metamodel using cross-references
in which the results of static semantics analysis (e.g., method calls, variable
references, constructor calls and type information) are stored. The foundation
for JaMoPP is such a metamodel which is derived in the following.

The Java Language Specification (JLS) [5] itself does not provide a complete
explicit metamodel. Rather, the syntax and semantics of Java are specified either
informally or using syntax diagrams. The closest thing to a metamodel Java itself
provides are its reflection facilities. However, these do not assemble a complete
metamodel since they do not capture fine-grained elements like statements.

Existing Java parsers (e.g., javac or the Eclipse Java Development Tools
(JDT)) have internal metamodels written in Java (i.e., a set of classes to create
the Abstract Syntax Tree (AST)). These classes represent—in contrast to Java’s
reflection—all the features and constructs of the Java language, but are still not
defined in a standard metamodelling language. One implementation that is clos-
est to a standardized solution is the Java 5 implementation of the Stratego/XT
system [6]. However, also this approach does not provide an integration with
standard metamodelling tools.

The metamodels for Java that were defined in a standard metamodelling
language so far again suffer the drawback of incompleteness. The OMG has pub-
lished a metamodel [7] that provides coarse-grained concepts of Java (classes,
methods, fields, ...), but does not provide blocks, statements or expressions. An-
other metamodel was developed in the MoDisco1 project. While, this metamodel
1 http://www.eclipse.org/gmt/modisco
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Fig. 1. Metamodel for the Java language

is almost complete, it still has a couple of shortcomings. First, it is purely tree
structured—it does not model any static semantics (identifiers are not resolved
to their respective elements, but stored as plain strings). Thus, consistency is not
necessarily preserved when manipulating models. Second, the MoDisco project
creates model elements by traversing the Eclipse JDT AST. This is fine for the
purpose of discovering models from Java programs (creating models from source
code), but does not support the reverse direction (creating source code from
models). From our perspective, the most complete metamodel was defined in
the SPOON [8] project. In contrast to the MoDisco model, it contains cross
references to express, for example, method calls. It does, however, not provide
abstractions for concepts used in different metaclasses (i.e., it contains no ab-
stract metaclasses) and the static semantics analysis is performed by the JDT,
leading to a close coupling with the latter. Both the missing abstractions and
the close coupling with the hand-coded JDT tooling hinder customization and
extension.

As we could not find a metamodel that does both conform to a well estab-
lished metamodelling language (in particular Ecore) and fulfils our need for com-
pleteness, we decided to compare the existing metamodels, extract commonalities
and extend them to fully support the JLS. Figure 1 shows the resulting pack-
ages and classes of our metamodel. The attributes, references and inheritance



relations are not shown here due to space limitations. However, the complete
metamodel is available online at the JaMoPP Website2.

Our metamodel defines 80 abstract and 153 concrete classes, which are di-
vided into 18 packages. The SPOON metamodel, which we consider the most
complete model of the ones mentioned before, contains 140 concrete classes. The
higher number of classes found in our metamodel has two reasons. First, we
pushed all attributes that were present in multiple metaclasses to an abstract
super class to reduce redundancy. Second, elements that can be used exchange-
able (e.g., ForLoop and WhileLoop) share a common super class (Statement). This
allows to use these elements uniformly.

Besides these additional abstract classes, our metamodel contains all ele-
ments of the Java language (e.g., classifiers, imports, types, modifiers, members,
statements, variables, expressions and literals) and in particular those that were
introduced with the release of Java 5 (e.g., annotations and generics).

2.2 Text Syntax Specification for Java Source Files

To make use of the metamodel defined above, a text syntax specification is
needed from which tooling (i.e., a parser and a printer) can be generated. This
task is performed by our tool EMFText. For each concrete metaclass we defined
a text syntax rule. In the following, we will use the two rules given in Listing 1 to
exemplify the generation procedure. Showing all rules is not possible due to space
limitations, but the complete set of rules is available on the JaMoPP Website.

1 CompilationUnit ::= ( "package" namespaces[] ( "." namespaces[] )* ";" )?
2 ( imports )*
3 ( classifiers )+ ;
4 ClassifierImport ::= "import" ( namespaces[] "." )+ classifier[] ";" ;

Listing 1. CS specification for metaclasses CompilationUnit and ClassifierIm-
port.

The language used by EMFText to specify text syntax is called CS. Syntax
rules in CS consist of a left and a right-hand side, where the former references a
metaclass and the latter defines the syntax for this class. The right-hand side is
built from two atomic elements: keywords (enclosed in double quotes) and feature
names. Feature names refer to attributes or references defined in the respective
metaclass. Furthermore, CS uses concepts from the Extended Backus-Naur Form
(EBNF). Elements can be grouped using parenthesis, optional parts are tagged
with a question mark (Line 1), optional parts that may occur multiple times are
indicated by a star (Line 2) and mandatory, but possibly repeating elements end
with a plus sign (Line 3). CS rules are used to generate a parser, a printer and
a set of reference resolvers for the defined language. Thus, we will explain next
how these three components are derived.

Parsing is based on a Context-free Grammar (CFG), which is derived from
the CS specification and implemented using a recursive descending parsing strat-

2 http://jamopp.inf.tu-dresden.de



CS element CFG element Example

Keyword Terminal symbol "package" (Line 1)

Feature (attribute) Terminal symbol namespaces[] (Line 1)

Feature (containment reference) Non-terminal symbol imports (Line 2)

Feature (non-containment reference) Terminal symbol classifier[] (Line 4)
Table 1. Mapping of CS elements to a CFG

egy. The atomic elements of the CS specification are mapped to a CFG as shown
in Table 1.

The keywords form terminal symbols, while features can be mapped either
to non-terminals or terminals. This decision depends on the properties of a fea-
ture defined in the metamodel. Attributes and non-containment references (i.e.,
edges that do not belong to the AST) must be followed by square brackets
(e.g., namespaces[] in Line 1). and will be interpreted as terminal symbols. The
value of the terminal (i.e., the concrete text that appears in the source file) is
taken as value for the attribute (in this case namespaces). If the feature is a
non-containment reference (e.g., classifier[] in Line 4), the text is interpreted
as identifier for the referenced element. This means that the classifier is defined
somewhere else (i.e., in the file of the imported classifier) and represented by
a symbolic name here. To map this name to the correct imported classifier a
reference resolver is generated by EMFText.

For containment references (e.g., imports in Line 2) a non-terminal is derived.
By looking at the metamodel EMFText knows that imports is a reference to
objects of type Import. Thus, for the non-terminal of imports a parser rule with
alternatives for all concrete subclasses is created. One of this alternatives is, for
example, a ClassifierImport (Line 4 in Listing 1).

Resolving is needed to map names to the respective referenced elements. An
example for an reference is the reference between an IdentifierReference (pack-
age references) used in an expression and the LocalVariable (package variables)
it refers to. Rules for resolving such references are specific to Java and must there-
fore be added by extending the resolvers generated by EMFText. In addition,
there are also external references (e.g., imported classifiers). These references
span multiple files and are discussed detailed in Sect. 2.4.

Printing is the inverse process to parsing. EMFText generates a printer from
the CS specification that contains separate print methods—one for each concrete
metaclass. According to the CS rule that belongs to a class, the printer emits
keywords for model elements, the values of element attributes and recursively
calls subsequent methods to print contained elements.

For the first rule shown in Listing 1, the print method first emits the keyword
package, but only if the namespaces attribute is set. Afterwards the package iden-
tifiers are printed from the sequence of package names stored in the namespaces

attribute. When printing references the printer distinguishes containment and
non-containment references. For a non-containment reference, the printer inverts
the reference resolving done by the parser. Instead of the referenced element it-



self, only the respective symbolic name is printed. After processing the package
declaration of the CompilationUnit, the contained import elements are printed
using the appropriate print method (e.g., the one for ClassifierImport). Finally
the parser prints the CompilationUnit’s body using the same mechanism.

As a final remark, we must say that our syntax is less restrictive than the
ones used by Java compilers. For example, modifiers (e.g., abstract) are allowed
for certain elements (e.g., Fields) where they cannot actually be used. We could
add constraints to our metamodel that can detect such violations after parsing,
but this is subject to future work.

2.3 Class File Handling

Our work concentrates on parsing and printing Java source files. Still, a class
referenced from a source file might sometimes only be available in byte code
format. An example is a reference to the class java.lang.Object of Java’s stan-
dard library which might not be available as source code. For this purpose, we
implemented the ClassFileModelLoader which uses the BCEL3 byte code parser
and translates the output of the BCEL parser into an instance of the Java meta-
model. We require only the public header information of class files and there-
fore only instantiate elements of the following metamodel packages: containers,
classifiers, members, parameters, types, arrays and generics. Printing (saving)
is not supported for class files.

2.4 Resource Management and Java Classpath

As mentioned in Sect. 2.1, our metamodel is defined in Ecore which is the meta-
modelling language of EMF. In addition to the fact that Ecore is widely accepted
and used, EMF provides many facilities and tools to put metamodels into prac-
tical use. In particular, a new language defined in Ecore can be plugged into
EMF transparently. EMFText generates printer and parser in a fashion that
they can be transparently used by any EMF-based tool. Thus, despite of their
specific text syntax, Java models can be handled as any other models by the
tools. This section gives a brief overview of the features of EMF used to achieve
this (illustrated in Fig. 2).

In EMF, each model is associated with a Resource (1) and has a unique
identifier—a URI. A Resource is responsible for loading and saving its model.
EMFText generates a specialised Resource from a CS specification and connects
it with a generated parser (for loading) and printer (for saving). Figure 2 shows
the JavaResource (2) together with the JavaParser (3) and Printer (4) all gen-
erated from the Java CS specification presented in Sect. 2.2. Additionally, we
extended the JavaResource (1) to use the ClassFileModelLoader (5) of Sect 2.3.

Resources (1) are manged by ResourceSets (6). Each EMF-based modelling
tool (7) (e.g., all tools used in Sect. 3) connects to EMF by instantiating a
ResourceSet. A ResourceSet can acquire ResourceFactorys (8) to create new

3 http://jakarta.apache.org/bcel
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resources. A factory is automatically selected based on the extensions of the
Resource’s URI. The actual encoding of a resource is therefore hidden to the
modelling tool (7) that uses a ResourceSet (6). For *.java and *.class files,
the JavaResourceFactory (9) (also generated by EMFText), is therefore selected.

EMFText also generates stubs for resolver implementations. Resolvers plug
into EMF’s proxy mechanism and are responsible for resolving non-containment
references on demand. In Java this is basically name and type resolution. Our
JavaResolver (10) realises this for references within one resource as well as for
cross-resource references. Cross-resource references required our special attention
because of the high fragmentation of Java models into several files (usually one
class per file). An example of a cross-resource reference is the reference between
a Field (package members) and the Classifier (package classifiers) that defines
its type and resides in another Resource. EMF provides the global URIMap (11) as a
global registry for resources. The ResourceSet can use it to find additional model
resources on demand. To construct unique URIs for Java classes we provide the
Classpath (12). Through this, the actual physical location and the encoding of
a JavaResource (whether it is a source or class file) is hidden.

2.5 Test and Evaluation

The previous sections presented our metamodel, as well as a parser and a printer
for the Java language. To show that our approach can handle industrial-sized
applications, a large test suite and a test process were created that allow to check
whether JaMoPP complies to a reference implementation (the JDT).

The objectives of our test suite are to verify that 1) our parser accepts valid
Java programs, 2) our resolver resolves all names and types, 3) the so created
model instance has the expected structure, 4) our resolver de-resolves all cross-
references to their correct string representation and 5) our printer emits correct
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and complete source code for model instances. To meet these five objectives the
test process shown in Fig. 3 was employed.

Starting with a valid Java source file (upper left corner of Fig. 3), both our
parser and the reference implementation (the JDT) process the given input file
and create an AST—which in the case of our parser is a model with unresolved
cross-references. Next, our resolver first resolves all names to cross-references
and afterwards de-resolves the cross-references to names again. Then the model
is printed to its text form, which is again processed by the JDT parser (lower
right corner of Fig. 3). The second JDT AST is then compared to the original
JDT AST using the JDT’s own AST matcher.

The given procedure meets the five objectives given above. 1) If our parser
does not accept a valid file it can either throw a parsing exception or run forever—
both cases are detected by unit tests. 2) After resolving, the test checks the model
for unresolved references and throws an error if it finds any—thus testing if the
resolver succeeded. 3) The model instance is checked for completeness through
several mechanisms. Elements that are referenced but missing are already de-
tected by the resolver. Furthermore, since the resolving is a complex procedure,
also other structural errors in the model lead to failures in the resolver. Any other
missing information can not be printed and will thus be detected by the AST
matcher. In addition, we manually wrote unit tests for distinct Java language fea-
tures. They consist of assertions that check whether the correct model elements
are created for given pieces of source code. 4) When resolving succeeded, the ref-
erences are de-resolved again and printed. However, it’s still possible that, i.e.,
a method call gets resolved to the wrong method but printing after de-resolving
results in the same method call. These kinds of errors cannot be detected by the
AST matcher but are covered by manually written unit tests. 5) Other errors
that are caused by wrong printing only are also detected by the AST matcher.
When the matcher delivers a failure, we manually compared the original and the
reprint to discover the location of the error.

The input for this test process were 79.017 Java files (15.5 million non-empty
lines including comments). In the end, all 79.017 Java files passed the test pro-
cess. Among these files were some self-defined classes for testing individual lan-
guage features, the sources of two IDEs (Eclipse 3.4.1 and Netbeans 6.5.1), ap-
plication and web servers (Apache Tomcat 6.0.18 and JBoss 5.0.0 GA), math



libraries (Apache Commons Math 1.2, Mantissa 7.2), web frameworks (Google
Web Toolkit 1.5.3, Spring 3.0.0M1 and Apache Struts 2.1.6), an XML Parser
(XercesJ 2.9.1), a code generator framework (AndroMDA 3.3), the Sun JDK
1.5.0 Update 16, as well as subsets4 of the compiler test suite JACKS and the
JDT test project. Due to space limitations we kindly refer to the JaMoPP Web-
site for the links to the test sources.

The tests were automated using JUnit and revealed many errors during the
specification of the text syntax and the implementation of the resolvers. Due to
the specific nature of the test inputs, quite different classes of errors were found.
For example, the tests in the JACKS suite are very specific and contain many
special corner cases mentioned in the JLS. Escaped unicode sequences used in
keywords, optional end of file characters and complex number literals are just a
few examples.

In some cases the test process failed at almost every possible step and showed
that the complex procedure is worth the effort. To give an example, one of the
tests revealed that our parser did not accept switch statements where the default

case was not the last one. Thus, we corrected the CS specification, regenerated
the parser, which then in turn accepted the default cases. But, the print test
was still failing, because the default case was represented in the metamodel
separately from the other switch cases. As a consequence, the default cases
were parsed correctly, but still printed at the end of the case list. Addressing all
cases using one 0..* reference in the metamodel solved the problem.

In summary we can say that the presented test procedure does not guarantee
the correctness or completeness of our implementation, because no proof was
established. Nonetheless, the executed tests were performed on industrial-sized
applications and give confidence that JaMoPP can be applied in practice.

3 Examples

Bridging the textual and model-based representation of Java programs has sev-
eral benefits. In this section we present a selected set of applications that can
profit from JaMoPP. The applications represent typical development activities
(e.g., generating, analysing and visualising code), but also cover more advanced
actions (e.g., composing programs or building product lines).

The running example which will be used throughout this section is a con-
tact management application (cf. Fig. 4). A ContactList is organised into sev-
eral Groups, each containing a number of Contacts. We distinguish Person and
Company contacts. In addition information like Addresses, or Relationships be-
tween Contacts is managed.

The first example (Sect. 3.1), shows how a general purpose model transforma-
tion language can be used to generate Java code (i.e., models of Java programs)
from UML models. As this generation process is performed solely based on mod-
els, the resulting code is guaranteed to be syntactically correct. The second

4 Only compilable classes were used, invalid files were omitted
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application (Sect. 3.2) employs JaMoPP for model-based code analysis. Based
on the Object Constraint Language (OCL) we show how to query and analyse
Java code by means of model-based technology. Furthermore, Sect. 3.3 shows
how existing model visualisation tools can be applied to Java source code.

A more advanced application follows in Sect. 3.4 where Java models are
used to compose programs in a syntactically safe manner. This is in contrast
to common template engines which merely concatenate strings, but can give no
guarantees with regard to syntactical correctness. Finally, we will conclude this
section by showing how Software Product Line Engineering (SPLE) can benefit
from our approach (Sect. 3.5).

The main objective of our applications is twofold. First, they show how exist-
ing model-based technology can be easily reused to operate on a textual general
purpose language. Second, our applications present advantages that are not solely
connected to the reuse of tools, but show that operating based on standardised
models can conquer some of the limitations proprietary text-based tools have.

3.1 Java Code Generation with Model-2-Model Transformations

Model transformations are central to any MDSD process. In the literature, such
transformation are usually divided into two categories: model-2-model (m2m)
and model-2-text (m2t). The former transform models (i.e., instances of meta-
models) into other models; the latter models into plain text. An m2t transfor-
mation can be used to generate any kind of, not necessarily structured, text
(e.g., documentation). Currently, m2t transformations are often used to gen-
erate code—not seldom Java code. Since for most m2t engines their output is
simply a sequence of strings, they can not guarantee correctly structured results.
By regarding Java as a modelling language, we can replace m2t transformations
with m2m transformations which are aware of the metamodel of their output.
Some benefits of this are shortly examined in this section.

We used the Atlas Transformation Language (ATL) of the Eclipse M2M
Project5 to define a transformation from a UML class diagram into a set of Java
classes. The transformation can handle all concepts of UML used in Fig. 4. ATL
is a declarative rule-based language relying on OCL. Consult [9] for more details.
5 http://www.eclipse.org/m2m



1 rule Property {
2 from umlProperty : uml!Property
3 to javaField : java!Field (
4 name <- umlProperty.name,
5 type <- typeReference
6 ),
7 typeReference : java!TypeReference (
8 target <- if (umlProperty.upper = 1) then
9 umlProperty.type

10 else
11 java!Package.allInstances()->any(p | p.name = ’java.lang’).compilationUnits->collect(
12 cu | cu.classifiers)->flatten()->any(c | c.name = ’LinkedList’)
13 endif,
14 typeArguments <- if (umlProperty.upper = 1) then
15 Sequence{} --empty type argument list
16 else
17 Sequence{typeArgument}
18 endif
19 ),
20 typeArgument : java!QualifiedTypeArgument(
21 target <- umlProperty.type
22 )
23 }

Listing 2. ATL rule that translates a UML Property into a Java Field

Representatively, Listing 2 shows one rule of our ATL transformation that
transforms UML Properties into Java Fields. In UML, Attributes as well as
AssociationEnds are Properties and are thus matched by the rule shown in
Line 2. The corresponding concept in Java is Field of which one is constructed
as seen in Line 3. The name of a UML Property is mapped to the name of the
constructed Java Field (Line 4). For the Field’s type, a TypeReference is created
and assigned (Lines 5 and 7).

Determining the concrete target of the TypeReference is a bit more complex:
if the UML Property has a multiplicity greater than one, it should be mapped
to a list type. Therefore, depending on the UML Property’s upper bound, we
either map to the Java Type that corresponds to the UML Type of the Property

(Line 96), or find the java.lang.LinkedList class by examining the Java standard
library packages (Lines 11–12), which are also represented as models and given
as input into the transformation. If a list is used, it should be type-argumented
with the correct type. Therefore, a TypeArgument is constructed (Line 20), set to
the correct type (Line 21) and assigned (Line 17).

The m2m transformation rule presented above, shows how a complex type
mapping between UML and Java can be realised without bothering about details
of the text syntax. In a m2t transformation one has to keep care of opening and
closing angle brackets for type arguments and that all “;” are correctly placed.

However, we do not want to imply that code should only be produced by
m2m transformations in the future. As one can see, for instance, in Lines 11–
12 of Listing 2, m2m transformation rules tend to become complex. With a

6 here ATL automatically determines the rule that translates the UML Type into the
Java Type (rule not shown here)



Fig. 5. Screenshot of the RestrictED tool

m2t template, this part can be written down more elegantly. With the Java
metamodel at hand, we can start to combine the advantages of m2m and m2t
transformations. A typesafe template language for Java could be defined by
extending the metamodel with template functionality. Section 3.4 will show that
such extensions can now be performed using metamodelling.

3.2 Generic Source Code Analysis based on OCL

Source code analysis is a common approach to find irregularities and bugs in
programs or to enforce coding conventions. As a consequence various tools exist
to support developers in this task (e.g., Findbugs [10] for the Java language).
Based on pattern matching or abstract interpretation these tools can find faults
in programs without actually executing them.

Using model-based representations of programs, such analysis can be per-
formed uniformly for arbitrary languages. For example, our analysis tool Re-
strictED [11] uses declarative expressions written in OCL to specify undesired
code patterns. Our earlier experiments [11] showed that static analysis can be
performed on small toy languages. With the advent of JaMoPP this approach
can be applied to the Java language in its full extent.

Returning to our running example, we might now want to make manual addi-
tions to the code generated in the last section. Such additions should not violate
the guidelines that were respected by the code generation. We will use RestrictED
to present two simple OCL invariants to check common coding conventions.

Listing 3 shows the first OCL expression. This invariant states that fields
must not use the modifier public by collecting the set of modifiers that have the
type Public and checking that this set is empty.

1 context members::Field inv:
2 self->modifiers->select(m|m.oclIsKindOf(modifiers::Public))->size() = 0

Listing 3. OCL invariant to find public fields



1 context members::Method inv:
2 if (self.name = ’equals’) then
3 (self.container->members->exists(m | m.name = ’hashCode’))
4 else true endif

Listing 4. OCL invariant to detect missing hashCode() methods

A second invariant (Listing 4) states that whenever a classifier contains a
method equals() an implementation of the hashCode() method must be present
too. This is important because the implementation of both methods must match
to ensure correct comparison in collections.

Figure 5 shows a screenshot of the RestrictED tool applied to one of the
classes generated in Sect. 3.1. The two basic examples indicate how arbitrary
OCL expressions can be used to analyse Java source code. In contrast to most
other analysis tools for Java, users can add custom restrictions, do so declara-
tively and use the same language for all software artefacts. Furthermore, JaMoPP
enables using model transformations to declaratively repair code according to
given rules.

3.3 Tailored Visualisation with GMF

Visual representations raise the level of abstraction and help the comprehen-
sion of software systems [12]. Thus, especially for modelling languages graphical
syntaxes enjoy a high reputation. To ease the time consuming and cumbersome
task of building visualisations or even graphical editors, several model-based vi-
sualisation frameworks emerged [13, 14]. With JaMoPP providing a model-based
representation of Java these technologies can now be applied to build tailored
visualisations for Java programs.

Using the Graphical Modeling Framework (GMF) [14] we generated the ed-
itable diagrammatic representation for Java packages depicted in Fig. 6. It pro-
vides a comprehensive overview of a package’s structure and its type interrela-
tions and could help the exploration of big Java libraries and frameworks. As a
simple example we visualised the code generated in Section 3.1.

GMF provides a model-driven approach for generating editors for EMF-based
languages. Graphical primitives like nodes and arrows are used to visualise model
instances. These primitives are related to and customised with regard to classes,
class properties, and references of our Java metamodel. This adaptable mapping
provides flexibility in to ways: First, visualisations can be tailored to the require-
ments of a specific engineering task. Second, an existing visualisation can easily
be extended to other languages by adjusting the visual mappings.

The capabilities of the editors generated with GMF go beyond just visualising
models graphically. They also allow for editing models using their graphical
representation. Since the JaMoPP printer serializes Java models to source files,
these changes are transparently mapped to the underlying source code. Thus,
JaMoPP contributes to the development of visual tools for software development
with Java.



Fig. 6. Visualisation of the package structure generated for the contact management
application

3.4 Java Extension to Separate Generated and Hand-Written Code

To demonstrate and experiment with new language concepts, Java is often ex-
tended with new features. These features are implemented in prototypes that
can often only treat subsets of Java due to a lack of language engineering tool
support. Existing tools, like editors, can no longer be used when unaware of the
extension.

In MDSD, tools for metamodelling and agile language development exist
that are aware of evolution and change of languages, which makes it consider-
ably easier to perform language extension while preserving tool support. The
GMF definitions demonstrated in the last section, for instance, can be easily
adjusted if changes to the Java metamodel are made—and the GMF editor can
be regenerated. Same applies to EMFText’s CS-specifications, which have an
import mechanism to extend a text syntax along with a metamodel.

The scenario we examine in this section is separation of generated code skele-
tons (as produced by the transformation of Sect. 3.1) from the list of statements
of a method body directly defined in Java. Usually these can not be separated
into single artefacts in Java, because a list of statements on its own is not a com-
pilable unit. Furthermore, it would be helpful, if a transformation to Java can
indicate where additional code is required when the information for generating
it is missing. Java does also not provide a specific construct for that.

In this section, we extend Java with the two features mentioned above and
utilise the Reuseware Composition Framework7 to define a preprocessor that
composes models of the extended Java language into plain Java. To do so,
the Java metamodel is extended by defining a new package reuse with the
classes 1) StatementUnit, which is a subclass of JavaRoot and has a reference

7 http://reuseware.org



Fig. 7. Screenshot of using the extended Java with Reuseware

statements of type Statement, and 2) StatementVariationPoint, which is a sub-
class of Statement. Both are also NamedElements. This extension can be done
without altering the original Java metamodel by using the import feature of
Ecore.

The text syntax is extended in a similar manner. Listing 5 shows the complete
specification. In Line 1, the Java metamodel (http://...) and its text syntax
(java) are identified for import. In Lines 2 and 3 two additional rules that give
the text syntax for the new constructs are specified. EMFText takes all the rules
of the imported syntax into account when generating printer and parser. There-
fore, the new rules are woven into the existing syntax: StatementUnit can be used
as alternative for other JavaRoots (e.g., CompilationUnit) and StatementVariationPoint

as alternative for other Statements.

Figure 7 shows a usage of the extended Java. The transformation of Sect. 3.1
can be extended to produce a StatementVariationPoint for empty methods (lower
left of Fig. 7), or wherever else information is missing. EMFText’s editor remains
working for the extended Java and can be used to define statement lists stand
alone (lower right of Fig. 7). These can be composed with the generated code
by defining composition programs in Reuseware (top of Fig. 7)—thus keeping a
clean separation between generated and hand-written (or hand-modeled) code.

This section showed how a Java extension can be easily realised using MDSD
technologies with JaMoPP. Only two additional metaclasses and 5 lines of text
syntax specification were needed. Therefore, JaMoPP enables the definition of
custom extensions for Java tailored to any specific MDSD process.

1 IMPORTS { java : <http://www.emftext.org/java> WITH SYNTAX java }
2 RULES {
3 StatementUnit ::= "statements" name[] "{" statements* "}" ;
4 StatementVariationPoint ::= "<" "<" name[] ">" ">" ";" ;
5 }

Listing 5. Extended Java syntax



1 2

Fig. 8. Mapping features to Java code using the FeatureMapper

3.5 Software Product Line Engineering with JaMoPP

SPLE [15] defines a method to develop a set of related software applications by
explicitly managing their common and variable features. Single product features
are mapped to specific realisation artefacts of the Software Product Line. Thus,
a concrete application can be automatically derived, by removing all realisation
artefacts which are not mapped to features selected for the product variant.

To map realisation artefacts in accordance to specific features, tradition-
ally annotation techniques like #ifdef statements, Frames [16], and Traits [17]
or composition techniques like mixin layers [18], aspects [19], CaesarJ [20], or
AHEAD [21] are used. While annotation techniques do not consider the struc-
ture of the annotated implementation language and, thus, can not assure the
correctness of the resulting source code, compositional approaches are restricted
to a coarse module granularity and can not represent fine granular feature reali-
sations [22]. All techniques share the common drawback that they do not provide
good tool support for defining and maintaining feature mappings. In addition,
the lacking tool support makes it hard for developers to comprehend feature
mappings.

The tool FeatureMapper8 provides a visual paradigm for mapping features
to artefacts of EMF-based modelling languages [23]. JaMoPP now enables the
application of the FeatureMapper to the Java language and targets the problems
of the aforementioned mapping paradigms.

Figure 8 depicts a screenshot of the FeatureMapper. The MappingView on
the left (1) displays the features of a product line. EMFText’s editor (2) shows
a Java file. Mappings can be created by assigning code elements to features.
Here the level of detail in the Java metamodel introduced by JaMoPP is of
key importance. The selectable code elements comply to the granularity of the
metaclasses. A concrete selection and the result of its removal from the source
code can be checked for well-formedness regarding the Java metamodel. This

8 http://www.featuremapper.org



makes the mapping as fine granular as annotation based mappings and as safe
as in compositional approaches.

To address the problem of comprehensibly for developers the FeatureMap-
per provides several visualisation techniques. Figure 8 depicts one example—the
context view. This visualisation colours the elements in the source code in ac-
cordance to the colour of the features in the feature model they are mapped
to. This allows to investigate how features are realised in different product vari-
ants and how feature realisations interact. The example shows two variants of
the ContactList. Source code elements highlighted in a darker shade belong to
a variant of the ContactList were Contacts are managed in Groups. The Java
code elements in a brighter shade represent the implementation of a simplified
ContactList without the Feature Groups. Further visualisation techniques used
in the FeatureMapper are discussed in [24].

The presented example shows how the model-based representation of Java
code provided by JaMoPP enables a SPLE tool developed for modelling lan-
guages to be used at implementation level.

4 Related Work

In principal, the gap between the model of a system, specified using a modelling
language, and its implementation, written in a programming language, can be
closed in two ways. First, through traditional code generation techniques (e.g.,
template-based approaches) code can be directly generated from models. Second,
the programming language can be lifted to the level of modelling languages, as
done for Java in this paper, to create programs on the modelling level and then
convert these, utilising a concrete syntax mapping, to text that can be processed
by existing tools for the programming language. The second procedure introduces
an additional intermediate representation that enables a number of additional
opportunities as discussed for Java above.

Consequently, this section splits into three parts. First, we compare our work
to existing code generation approaches that do not explicitly treat Java as a
modelling language. Second, we relate our approach to other works done in the
area of textual syntax mapping. Third, we look at existing work that aims at
raising the Java language to the level of modelling languages.

Code Generation can also be considered as meta programming, which
in turn can be performed in different ways. One can either use the concrete
or the abstract syntax of the target language, or emit code using string liter-
als [25]. Template languages are based on the concrete syntax and are trans-
lated to meta programs containing string literals in order to execute them. Most
Computer-Aided Software Engineering (CASE) tools (e.g., Borland Together9,
MagicDraw10, or TOPCASED11) utilise template languages of this type and
source code is therefore typically represented as plain text. That means, the
9 http://www.borland.com/de/products/together/

10 http://www.magicdraw.com/
11 http://www.topcased.org/



structure of the target language is not regarded when specifying the generator.
JaMoPP follows the suggestion of [25] and enables the use of an object-language
aware template language. This avoids the following issues that can be found in
the text based code generation techniques. First, it is hard to ensure that the
generated code conforms to the target language. Second, the generated imple-
mentation is only loosely connected to the models it was derived from. Estab-
lishing trace links between the models and the generated source code is hard if
code generation is performed on the level of strings. Third, because of the loose
connection between models and code, CASE tools must use reverse engineering
to get back to the modelling level. Fujaba [26] provides a particular interesting
approach in this area. To reverse engineer models from generated code Fujaba
uses a template-based parsing approach. However, this approach works only well
for code originally generated by Fujaba. Manually added code can only be parsed
if it strictly conforms to the conventions of the used code templates. JaMoPP
cleanly separates the two concerns (mapping models to Java and mapping Java
to text) and enables traceability for code generation because this is performed
as a model transformation. Thus, both the conformance to the target language
(i.e., Java) and the loose connection problem are addressed by our approach.

Textual Syntax Mapping Besides EMFText, a number of tools to provide
textual syntax for models exist. A comprehensive classification in [27] shows that
most of these tools share many features of EMFText. EMFText was chosen for
JaMoPP—in addition to the fact that we are familiar with the tooling—because
of: a) its resolving mechanism that can be tailored to the needs of a complex
language as Java b) its capability to generate printer and parser from a single
specification c) its import mechanism, which allows for modularisation, extension
and reuse of a syntax specification d) its tight integration with EMF through
which developers using EMF-based tools can directly profit from JaMoPP.

To the best of our knowledge, none of the other tools analysed in [27] provides
all these functionalities in combination. TCS [28], for instance, provides a nice
way to specify scoping rules declaratively. Unfortunately, these are not sufficient
to implement the complex resolution rules of Java and do not support resolving
among multiple resources. Xtext and Xpand [29] could be used in combination,
with Xtext mapping text to models and Xpand doing the inverse. However, this
leads to the need of maintaining two separate syntax specifications (one for each
direction). This is error-prone for a large language like Java and complicates reuse
and extension. In the above settings alternatives to Xpand like MOF2Text [30]
or the Epsilon Generation Language [31] could also be used for the mapping from
models to text. We also did not find a suitable import mechanism for language
extension in any of the other tools.

Java as a modelling language As mentioned in Sect. 2.1, the first step to-
wards lifting Java to the level of modelling languages is to provide a metamodel.
Existing Java compilers, primarily javac12, Jikes13, and GJC14, use internal rep-

12 http://www.java.sun.com
13 http://jikes.sourceforge.net/
14 http://gcc.gnu.org/java/



resentations of Javas concepts, i.e., they represent them by a set of Java classes.
In contrast, using a standardised, Ecore-based representation of abstract syn-
tax, allows to coordinate different activities and tools for software development
with Java. This need has been discovered before, but, as described in detail in
Sect. 2.1, the resulting metamodels lack features we found indispensable. The
most complete, Ecore-based metamodel we found was specified in the SPOON
project. SPOON relies on the Eclipse JDT to parse source code and print modifi-
cations. Language extensions involving new syntactical constructs, as we perform
them with JaMoPP, can not be achieved with SPOON.

5 Conclusion

Recent publications (e.g., [32]) show that treating a programming language as
modelling language is needed to close the gap that was introduced by traditional
code generation techniques. The JaMoPP approach contributes 1) a compre-
hensive metamodel of Java defined in the widely used metalanguage Ecore that
captures the static semantics of Java in cross-references, 2) an extensible text
syntax specification from which parser and printer are directly generated and
3) a modular implementation of Java’s static semantics analysis. All compo-
nents conform to the JLS and cover the complete Java language from high-level
constructs like Package, CompilationUnit, or Class to the lowest granularity of
individual Operators including also comments. Therefore, JaMoPP exceeds the
level of detail of other approaches for connecting specification models with (Java-
based) system implementations. JaMoPP was tested for completeness with an
extensive test suite. This shows that the idea of representing source code as mod-
els is feasible and can therefore be transferred to other programming languages.

With JaMoPP, we closed the gap between modelling languages and the im-
plementation language Java. We showed how different problems caused by this
gap are tackled with JaMoPP. On the meta-level, the JaMoPP specifications
can be extended or reused to enhance the quality of code-generation templates
or to reuse parts of Java in other modelling languages. The model-based repre-
sentation of Java code enables the usage of MDSD tools in areas like software
visualisation or software product line engineering.

The presented applications can only indicate the full potential of JaMoPP.
They encourage further investigations and open new perspectives to leverage
MDSD. To name a few, metamodelling, (bi-directional) model transformations,
model-based tracing and other MDSD concepts can now be used to build type-
safe Java template languages, separate hand-written from generated Java code
or to improve round-trip engineering of Java programs. Generally spoken, Java
can now be treated as a modelling language and therefore integrated into MDSD
as deeply as any other modelling language.
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