Harmless Metamodel Extensions
with Triple Graph Grammars

Jendrik Johannes
Technische Universitat Dresden
Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

ABSTRACT

Designing Domain Specific Languages through metamodel-
ing is an emerging engineering technique in software devel-
opment. Language development, however, is also always
tool development—which can be costly when languages are
developed from scratch. Costs can be saved by developing
new languages as extensions of existing ones—effectively by
extending metamodels. Here, existing tools, developed for
the existing language, can be reused to a certain degree. We
argue that a certain group of metamodel extension is harm-
less: keeping existing tools functional, while integrating new
tools to handle additional functionalities. To realize a plat-
form for this, two things are required: 1) a transformation
engine for the metamodel extension and 2) a synchroniza-
tion mechanism for tool integration. In this paper we show
how Triple Graph Grammars can be used to define both and
introduce an interpreter for these grammars that works in
an environment based on the Eclipse Modeling Framework.

1. INTRODUCTION

In contrast to general-purpose modeling language develop-
ment, Domain Specific Language (DSL) development has
to be much more cost-efficient. High development costs are
not acceptable since each DSL is designed for a specific prob-
lem domain with a limited set of applications possibilities.
A main issue for high development costs is tool building,
which is crucial to render newly designed languages usable.
Costs can be reduced by reusing existing tools where feasi-
ble instead of developing new ones from scratch. One way
to achieve this is to reuse metamodels as well—extending
existing ones rather than designing new ones.

Metamodel extension seems to be a promising direction for
simplifying DSL design and implementation. Especially, if
such extensions can be captured in a generic formalism for
extending arbitrary metamodels in a similar fashion. Then
tools based on the original metamodels and tools that know
about the specific extension can be used in combination,
without needs to develop new tooling. We have identi-
fied one such extension formalism—the Reuseware formal-
ism [4]'—which we believe of strong importance: adding
reuse abstractions to a language. That is, adding notions
of components, modules, aspects, or similar to leverage the
reuse of artifacts written in that language.

'The formalism was defined for context-free grammars here.
It was ported to metamodels, but publication is still pend-
ing.

Tobias Haupt
Technische Universitat Dresden
Software Technology Group
01062 Dresden, Germany

s0500251@inf.tu-dresden.de

The Reuseware extension of a metamodel is harmless: 1) all
original language syntax and semantics are preserved and 2)
the added features are syntactically closely related to orig-
inal ones. For a harmless extension, reuse of the original
modeling tools to design models is applicable: 1) the origi-
nal language is supported anyway and 2) the new constructs
can be mimicked by existing ones using naming conventions
or an escape mechanism, like annotations or comments, if
available.

Nevertheless, it is desired to translate such models into mod-
els conforming to the extended metamodel such that the ex-
tension specific (in this case the Reuseware specific) elements
can be clearly identified. This allows further processing of
the models (in this case by composition editors and engines).
This dualism of tools working on two different representa-
tives of the same model requires model synchronization.

In this paper we propose to utilize Triple Graph Grammars
(TGG) [7, 5] for both, the metamodel extension and the syn-
chronization of models. To realize this, we require a TGG
environment which integrates into our tool chain. We are
aiming for solutions based on the Eclipse Modeling Frame-
work (EMF) [1]. Since there is no TGG engine available for
EMF that supports model synchronization, we developed,
driven by our use case, the TGG interpreter Tornado.

The remainder of this paper is structured as follows. In
Section 2 the metamodel extension and model synchroniza-
tion scenario within the Reuseware composition context is
introduced. Following this, requirements for a TGG engine
and their realizations in the Tornado engine are described
in Section 3. Some related work is discussed in Section 4.
Section 5 concludes and points at future directions of work.

2. METAMODEL EXTENSION AND MO-
DEL SYNCHRONIZATION SCENARIO

We argue that through harmless metamodel extension a lan-
guage can be enriched with new powerful features while pre-
serving compatibility with original tooling. Such a harmless
extension is the Reuseware formalism [4]. In this section we
describe how Triple Graph Grammars are used 1) to per-
form the Reuseware extension on arbitrary metamodels and
2) to preserve tool compatibility.

2.1 Metamodel Extension
A metamodel extension can be expressed through a model
transformation, which in turn can be formulated as a TGG.

Core2 Reuse
Reuse

| refines | imports
1
| CoreMM |—n—p ggzzrm“ﬁ ReuseMM
e __________J

Figure 1: Reuseware metamodel extension formal-
ism

Usinig this notion, the basic idea of the Reuseware meta-
model extension is illustrated in Figure 1. A metamodel
CoreMM of the original language (the core metamodel) is ex-
tended by the transformation CoreMM2ReuseMM to an ex-
tended metamodel ReuseMM (the reuse metamodel). The
transformation is a specialization of a generic transforma-
tion (Core2Reuse) and the extended metamodel imports a
metamodel defining the basic Reuseware concepts (Reuse).

For illustrative purposes, we will use a simplified version of
the Reuseware metamodel extension formalism in this pa-
per. The main idea is, to introduce metaclasses for variation
point definition? for a selected set of existing metaclasses.
Variation points can be seen as placeholders for concrete in-
stances of metaclasses. They can be used to define template-
like incomplete models (so-called model fragments) that can
be reused to compose complete models. A variation point
is typed with the metaclass it stands for. That is, it can
only be replaced by an instance of that metaclass during
composition. This is reflected in the formalism, which can
be formulated in abstract TGG rules. One rule is shown
in Figure 2, where a metaclass (Reusable) is introduced as
superclass of the original metaclass and the corresponding
variation point metaclass. The latter additionally inherits
features from the abstract concept of variation point. The
other rules that complete the formalism are not shown.

As a concrete example, consider an UML-like metamodel
defining the metaclasses Package and Class into which we
would like to introduce variation points for classes. We spe-
cialize the TGG rule from Figure 2 to match the meta-
class with the name Class by adding the constraint name
== "Class" to the coreEClass. Application of the gram-
mar, interpreted as a left-to-right transformation, gives us
the extended metamodel, where ClassVariationPoints are
available as alternatives for Classes. Note that the special-
ization of the rule can be automated by a simple wizard tool,
where the developer only states for which metaclasses vari-
ation points shall be introduced. This effectively hides the
(sometimes complex) TGG rules from the developer.

2.2 Model Synchronization

The second, and more challenging, application of TGGs is
the synchronization between models (instances of the core
metamodel) and model fragments (instances of the reuse

2The full Reuseware formalism distinguishes different kinds
of variation points and allows structuring and grouping of
them as demonstrated in [3].

reuseEPackage : EP.
name = "Reuse"
+ corePackage.name

coreEPackage : EPackage

eClassifiers
++

eClassifiers

coreEClass : EClass reusable : EClass

++ ++
name = coreClass.name
u + "Reusable"
T —
eSuperTypes eSuperTypes
++ ++
++ ++
reuseEClass : EClass variationPoint : EClass
name = coreClass.name name = coreClass.name
+ "VariationPoint"
e
eSuperTypes
++
from Reuse: v
: EClass
name = "VariationPoint"
—

Figure 2: Operational TGG rule to introduce a vari-
ation point metaclass (in EMF-based metamodels)

metamodel). The synchronization is required because mod-
els are used to impersonate model fragments which allows
the reuse of existing editors. The real model fragment, used
in Reuseware specific tools, then describes conceptual the
same as the impersonator and both have to be synchronized.
While we focus on editor integration in this section, it is also
beneficial to enable synchronization between fragments and
composed models. That is a powerful and desired feature
in a Reuseware environment, since it allows to modify frag-
ments directly in a composition result. It can be achieved
by realizing the composition algorithm in terms of TGGs as
well.

containerCore : | [containerReuse :

Nt

++ ++
++ ++ ++
[placeholderElement : | ++ ++ variationPoint : |

Nt

Figure 3: Generic synchronization rule for variation
points

containerCore :
UMLPackage

containerReuse :
—O— ReuseUMLPackage

classes classes
++ ++
++ ++
placeholderElement : ++ variationPoint :

UMLClass ++ ++ UMLClassVariationPoint
name == "VP*" vpName = placeHolder.
name.subString(2
T

Figure 4: Specialized synchronization rule for UML
class variation points

package Collection
Model
Package Collection
<4 Class Bag
4 Association bag content
4 ClassVariationPoint ContentClass

synchronization
(Figure 4)

VPContentClass

Figure 5: Synchronization of a UML model and a
ReuseUML model fragment

As mentioned, we reuse existing editors and define model
fragments by means of the core language to save the ef-
fort of developing new editors for every reuse metamodel.
Variation points, not available as concepts in those editors,
are expressed through name conventions, annotations, com-
ments or similar means. TGG rules can then be applied to
translate such marked fragments into real model fragments
(i.e., instances of a reuse metamodel). An abstract TGG
rule for this is illustrated in Figure 3.

The abstract rule can be specialized to be used in the UML
scenario (cf. Figure 4). The rule defines that a naming con-
vention VP* can be used to express variation points through
classes. We can then use any EMF-based UML editor to
model a UML model fragment (cf. Figure 5a). Applica-
tion of the rule would translate it to a real model fragment
(shown in an abstract tree notation in Figure 5b). Further-
more, if changes are made later on in the editor, the TGG
engine will reflect those changes on the real fragment.

3. TORNADO TGG ENGINE

From the scenario presented in the last section, the following
requirements for a TGG engine are derived:

e Requirement: EMF as a model repository and Ecore
as a metamodeling language should be supported.
Justification: EMF is an accepted tool platform for
modeling and most (open-source) modeling editors are
based on it, and are thus targets for tool integration

o Requirement: Triple Graph Grammar rules should be
interpretable for incremental model synchronization.
Justification: Different physical model elements can
exist for the same conceptual element (e.g., model frag-
ments and composed models) and have to be synced.

e Requirement: A rule abstraction mechanism (like rule

inheritance) has to be provided to efficiently define
generic rules and specialize them.
Justification: The rules used in the metamodel exten-
sion and the model synchronization always have some
common part independent of the concrete metamodel
to extend. It is convenient to define this part once and
specialize it for concrete metamodels.

The following sections describe how these requirements are
fullfilled by the Tornado TGG engine and discuss problems
that are still topics of research.

3.1 Processing of EMF-based Models

The kernel of the Tornado engine is a pattern matching
and rule application algorithm which is capable of adding
and synchronize model elements by updating or reseting. It
utilizes the reflection facility of EMF for both: the analy-
sis and the updating of the model graph. In EMF, meta-
classes have the type EClass. Attributes and references are
stored in EStructuralFeatures possessed by EClasses. The
identification of model element types is done by matching
the name feature of their EClass. The matching of refer-
ences and attributes is a name-matching over the names
of the EStructuralFeatures of the corresponding EClass.
Through this metamodel independent implementation, mod-
els written in arbitrary EMF-based DSLs can be addressed
on the left and right side of TGG rules.

3.2 Incremental Model Synchronization

To support incremental model synchronization on changes in
the involved model graphs, the engine uses correspondence
models that are persistent over all successive synchronisa-
tion tasks. These are also EMF-based models which consist
mainly of CorrespondenceNodes and CorrespondenceLinks.
The EMF model import feature—the possibility to reference
elements in other models—is utilized to reference elements
of the left- and right-hand-side models. EMF ensures that
these links are kept when models are persisted.

Through the correspondence model, inconsistencies are rec-
ognized. If elements are deleted in one of the models this
can be easily observed because a reference to the imported
models breaks. Changes of elements (e.g., changes of at-
tribute values) are in general difficult to track. Here another
advantage of the EMF-based system can be utilized. If we
activate the engine at runtime we can observe the model ele-
ments and react on changes immediately. This can be easily
implemented since EMF comes with an observer mechanism
that is inherited by all EMF-based applications.

In synchronization, the major problem is to derive the re-
quired and optimal transformation steps towards a consis-
tent graph. As an example consider the change of attributes
of an element. This can put constrains on the element
that prevents the rule, used to create it, from matching any
longer. The problem can be resolved by resetting the for-
mally applied rule. Previously created elements have to be
deleted and, consequently, all depending rule applications
have to be reseted as well. An algorithm addressing this with
certain optimizations is described in [5]. However, the reset-
ing of rule applications is a severe action. Often, it leads to
a deletion of elements that later have to be re-created by re-
applications of rules leading to possible loss of information.
We currently work on an improvement of the algorithm that
tries to match other rules first on elements before deleting
them irrevocably.

3.3 Rule Definition with Rule Inheritance

To realize the required abstraction mechanism for TGG rules,
a rule inheritance mechanism has been realized in Tornado’s
TGG rule definition language. The mechanism supports
multiple inheritance (as known from object-oriented lan-
guages) on the base of nodes and edges. That is, features
of nodes can be refined and additional edges can be con-
nected to nodes. Through multiple inheritance, nodes can

be merged if their feature and connected edges conform. The
mechanism allows for abstract (i.e., incomplete) rules which
can not be applied without being refined. An example are
nodes without type declaration as used in Figure 3. The
other features of the rule definition language are designed
based on the general TGG formalism.

We provide an editor for rule definition which has been de-
signed and generated with the Graphical Modeling Frame-
work®. In the Reuseware metamodel extension case it is
primarily applied to define the abstract rules. Figure 6
shows the rule from Figure 3 defined for the Tornado en-
gine utilizing the editor. The concrete specializations can
be semi-automatically derived by DSL-developers using pro-
vided wizards.

e =
|d] ReusewareToollntegration.tggdi &3 . =8
- —
AbstractPlaceholderRulel01 | Palette
|1y Select
containerCorr (1 [conai | | | ©, Zoom
40 4+ 0 || | 2 Note -
'| | 4 Rule
| |
* 6o + ¥ | 4 ModelCr...
4 Corresp...
)) :
<> placeholderElement : [Left] (++ voCorr (++ & variatic <4 RuleLink
‘ ¢ Command
A
v
(e ;) <l ||

Figure 6: TGG rule editor

4. RELATED WORK

Fujaba provides the most advanced TGG engine at the mo-
ment [8]. Unfortunately, integrating it into an EMF en-
vironment is not trivial. A close integration, for instance,
with the EMF observer mechanism to track changes is not
realistic at the moment.

Another EMF-based interpreter is currently developed at
the University of Paderborn [5, 6]. Unfortunately, up to
now it only supports one-directonal model transformations.

The Atlas Model Weaver [2] can handle EMF-based models
and realizes a similar idea as TGGs. Instead of synchro-
nization models, so-called weaving models express relations
between elements, which do not necessarily express equal-
ity. Thus, there is no interpreter for the synchronization
semantics we require. However, the underlying Atlas Trans-
formation Language* provides a rule inheritance mechanism
with similarities to our TGG rule inheritance.

Other EMF-based tools for model management tasks, which
were considered as alternatives to TGGs, are developed in
the GMT project® (Epsilon, VIATRA2, 0oAW, and others).
While these are powerful tools, they all process models in a
batch-like fashion, have little support for model update, and
no build-in synchronization mechanism. Thus, they could
have been used as a base for the implementation of the syn-
chronization mechanism. Because of the desired close EMF
integration we decided on a Java implementation.

http://www.eclipse.org/gmf
‘http://www.eclipse.org/m2m/atl
®http://www.eclipse.org/gmt

5. CONCLUSION AND FUTURE WORK

The result of our work is twofold: First, we showed how
Triple Graph Grammars can be applied in a scenario of
harmless metamodel extension. Second, we developed a
TGG interpreter that meets our specific needs.

Our feeling is that the Reuseware formalism is only one pro-
totype of what we called harmless metamodel extensions. It
is an interesting direction to identify other useful extensions
like this. Possibly, the generic Reuseware TGG rules can
be further abstracted to a set of TGG rules reusable in any
harmless metamodel extension. This, paired with tool sup-
port for semi-automatic TGG rule specification, could lead
to powerful, yet easy to use, DSL development tools.

The development of the TGG engine driven by the concrete
use case has revealed interesting challenges. At many points
trade-off decisions had to be made concerning expressive-
ness versus usability. We are optimistic that ongoing de-
velopment will result in an interpreter that is utilizable in
the EMF world by TGG experts for several tasks. How-
ever, it seems that the direct usage of TGG rules for model
synchronization in software modeling is a too complex and
error-prone task for many developers. Systems, like the pre-
sented one, where TGG experts define a set of abstract rules
which are then refined by developers in a semi-autmatic way
offer an interesting combination of the powerful TGG for-
malism with easy usability.

6. ACKNOWLEDGMENTS

This research has been co-funded by the European Com-
mission within the 6** Framework Programme project Mod-
elplex contract number 034081 (cf. www.modelplex.org).

7. REFERENCES

[1] F. Budinsky, E. Merks, and D. Steinberg. Eclipse Modeling
Framework 2.0. Addison Wesley, Jan. 2007.

[2] M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Breton,
and G. Gueltas. AMW: A Generic Model Weaver. In Proc.
of the 17¢% Journées sur l’Ingénierie Dirigée par les
Modéles, France, Paris, 2005.

[3] F. Heidenreich, J. Johannes, and S. Zschaler.
Aspect-Orientation for Your Language of Choice. In Proc. of
the 11" Int’l Workshop on Aspect-Oriented Modeling (to
appear), Nashville, TN, September 2007.

[4] J. Henriksson, J. Johannes, S. Zschaler, and U. Afimann.
Reuseware — Adding Modularity to Your Language of
Choice. Proc. of TOOLS FEUROPE 2007: Special Issue of
the Journal of Object Technology (to appear), 2007.

[5] E. Kindler and R. Wagner. Triple Graph Grammars:
Concepts, Extensions, Implementations, and Application
Scenarios. Technical Report tr-ri-07-284, University of
Paderborn, June 2007.

[6] C. Lohmann, J. Greenyer, J. Jiang, and T. Systd. Applying
Triple Graph Grammars For Pattern-Based Workflow Model
Transformations. Proc. of TOOLS EUROPE 2007: Special
Issue of the Journal of Object Technology (to appear), 2007.

[7] A. Schiirr. Specification of graph translators with triple
graph grammars. In Proc. of the 20" International
Workshop on Graph-Theoretic Concepts in Computer
Science, Herrsching, Germany, volume 903 LNCS. Springer,
Berlin, 1994.

[8] R. Wagner. Developing Model Transformations with Fujaba.
In H. Giese and B. Westfechtel, editors, Proc. of the 4t
International Fujaba Days 2006, Bayreuth, Germany,
volume tr-ri-06-275, pages 79—82. University of Paderborn,
September 2006.

