Source Code Composition with the Reuseware Composition Framework

Jendrik Johannes*

Technische Universitit Dresden
Institut fiir Software- und Multimediatechnik
D-01062 Dresden, Germany
jendrik.johannes @tu-dresden.de

Abstract

The Reuseware Composition Framework is a tool-
supported framework that aids developers of new compo-
sition techniques with integrating them into programming
languages. In this tool-demo proposal we explain the usage
and benefits of the framework by defining an extension of
the Java language.

1. Introduction and Background

In software engineering complex systems are managed
by splitting them into components using different tech-
niques [4, 6, 1]. While the techniques of the object-oriented
paradigm—object interaction and class inheritance—are
the most prominent, they have proven to be insufficient for
many structuring needs. Therefore, new techniques, like
aspect-oriented programming [3], were developed.

When such new techniques are developed and discov-
ered in research, they are often prototypically implemented
as extensions of existing general-purpose languages like
Java or Prolog. The execution is often performed by pre-
processors rewriting the source code.

Such composition techniques are referred to as gray-box
compositions. In contrast to compiled black-box compo-
nents that are not altered at composition time, gray-box
source code components are internally changed during com-
position. Yet, they provide a clear composition interface,
which disinguishes them from white-box components which
are arbitrarily modifiable and thus are easy to break.

Reuseware supports the extension of existing languages
with component models for gray-box components [2, 5]. It

*This research has been co-funded by the European Commission
and by the Swiss Federal Office for Education and Science within
the 6th Framework Programme project REWERSE number 506779
(cf. http://rewerse.net), as well as through the 6th Frame-
work Programme project Modelplex contract number 034081 (cf.
http://www.modelplex.org).

is a Java framework with an Eclipse-based GUI that as-
sists the user in defining such extensions and generating
tooling for extended languages. Most importantly, it in-
cludes a generic pre-processesor which, extended by auto-
matically generated language-specific tooling (like parsers),
can execute compositions utilizing source code rewriting.
Through this tool support, experimentation and prototyp-
ing for newly developed composition techniques becomes
much easier.

2. Tool Demo Description

In this demonstration, we will explain the extension of
Java with a gray-box component model, which has its ori-
gin in Invasive Software Composition [1]. This will show
how composition systems for newly developed composition
techniques can quickly be build on top of the Reuseware
Composition Framework.

In the following, we refer to an original language (Java
in this example) as the core language; the extended as
reuse language. Components—which are fragments of
source code—are called fragment components or simply
fragments. Composition techiques are implemented in so-
called composers.

Using Reuseware is a two step process: First, the lan-
guage at hand has to be extended and tool support has to
be generated. Second, the generated systems can be used to
execute source code compositions. We first perform a sim-
ple extension of the language and then repeat the process to
realize an aspect-oriented composition technique.

Languages are described by grammars (Figure 1).
Reuseware supports the developer to extended a language
with additional constructs for variation point declaration.
Two types of variation points are supported: Slots are holes
in a fragment that have to be filled by other fragments.
Hooks mark positions, where additional fragments can be
inserted.

Once the desired extension has been performed, the com-
position system can be generated without further expense.

Bjava.as ‘\

FompilutionUnit - packageDeclaration:PackageDeclaration?,
importDeclarations:ImportDeclaration*,
classDeclarations:ClassDeclaration®*;

PackageDeclaration = name:QualifiedName;

ImportDeclaration = name:QualifiedName;

ClassDeclaration = modifier:Modifier, name:Identifier,
extends:QualifiedName?, implements:QualifiedName*,
classBody:MemberDeclaration*;

= AttributeDeclaration | MethodDeclaration |
MemberDeclarationSlot; l%

MemberDeclaration

MemberDeclarationSlot == componentmodel.slot;‘<544444444—

AttributeDeclaration - modifier:Modifier, ty Reuse |anguage construct
name:Identifier, valu
- modifier:Modifier, ty fOF Slot declaration
name:Identifier, arguments:VariableDeclaration*,
statements:Shatement* -

MethodDeclaration

Figure 1. Extended grammar of Java

When running the generated system, fragments can be writ-
ten in the extended language (Figure 2a/b).

Compositions of those fragments are described in com-
position programs. These are written in Reuseware’s Frag-
ment Composition Language (FraCoLa). It is a generic
composition language that can be used to define compo-
sitions of fragments written in arbitrary reuse languages.
Beside ordinary functionality of scripting languages (e.g.,
conditions and loops) the language allows to call the prim-
itive composers Bind and Extend. These are used to bind
fragments to slots and extend hooks with fragments respec-
tively. The composition program in Figure 2c binds the
Method fragment from Figure 2b to the Class fragment
from Figure 2a.

Another feature of the Reuseware Composition Frame-
work is the possibility to define customized complex com-
posers and tailored composition languages to call them. In
the following we will shortly demonstrate how this can be
utilized to realize a simple aspect-oriented weaving opera-
tor and a corresponding composition language.

A tailored composition language (here the weaving lan-
guage) is defined by a grammar, in which we reuse con-
structs from FraCoLa. The weaving language also contains
a new construct (Weave) for calling the weaving composer
defined in Figure 3. Such complex composer definitions
consist of successive calls to Bind and Extend and are also
written in FraCoLa.

Note, that the defined weave composer is language inde-
pendent. That is, it can perform cross-cutting source code
composition of fragments written in an arbitrary reuse lan-
guage. It could also be defined in a more Java specific way,
making it less flexible but easier to use for the composition
of Java fragments.

This short description only highlights the most promi-
nent features of Reuseware. In the demonstration the ex-
plained features will be shown in more detail on the intro-
duced, and also on other more advanced, examples.

[

Car.rjava 52 =) DriveMethod.rjava 52 =8)

package org.foo.vehicles;
public void drive
public class Car { (int direction) {
private String name;
private Engine engine; turn(direction);
doDrive();
<<myMethodSlot :

java.MethodDeclaration>>

public void startEngine() {
engine.start();
}

A

public void stopEngine() { ¥

(# CarComposition.bc 5\ = 0|
composition program @

fragmentlist java.CompilationUnit
fragmentlist java.MethodDeclaration

myCar
driveMethod

= /Car.rjava;
= /DriveMethod.rjava

bind myMethodSlot on myCar with driveMethod;

print myCar to /CoolCar. java;

Figure 2. (a/b) Two fragments and (c) a com-
position program

(@ weaver.bc S’s"\\

define composer weavinglanguage.Weave
(type, core, position, qualifier, aspect) {

foreach (thisPoint : ->core) {
if (thisPoint instanceof ->type) {
if (qualifier instanceof weavinglanguage.Before) {
prepend thisPoint.->position with ->aspect;

if (qualifier instanceof weavinglanguage.After) {
append thisPoint.->position with -»aspect;

Figure 3. The Weave composer

References

(1]
(2]

(3]

(4]

(3]
(6]

U. ABmann. Invasive Software Composition. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

J. Henriksson, J. Johannes, S. Zschaler, and U. ABmann.
Reuseware — adding modularity to your language of choice.
Proceedings of TOOLS EUROPE 2007: Special Issue of the
Journal of Object Technology (to appear), 2007.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP 97), volume 1241 of LNCS,
pages 220-242. Springer, Heidelberg, 1997.

D. Mcllroy. Mass-produced software components. In Pro-
ceedings of the 1st International Conference on Software En-
gineering, Garmisch Pattenkirchen, Germany, pages 88-98,
1968.

Software Technology Group of TU Dresden. Reusware web-
page. http://www.reuseware.org, Apr. 2007.

C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, New York, 1998.

