
Developing a Model Composition Framework with Fujaba –
An Experience Report

Jendrik Johannes
∗

Technische Universität Dresden
Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

ABSTRACT
Reuseware is an open-source model composition framework
for composing models defined in arbitrary Ecore-based lan-
guages. In its four years of development, Reuseware has
experienced many extensions and refactorings due to the
integration of new research results and requirements. One
year ago, a redevelopment of Reuseware’s core was started.
Thanks to its EMF code generation, Fujaba was introduced
as a new development tool into Reuseware’s development
toolchain to replace major parts of Java coding through
story driven modelling. With this we solved problems with
behavior modelling and code generation we faced in the de-
velopment so far. This paper summarizes our experiences
in developing with Fujaba and suggests improvements for
Fujaba and its EMF code generation based on that.

1. INTRODUCTION
The Reuseware project1 was started at the Software Tech-
nology Group of TU Dresden in 2005 as successor of the
COMPOsition SysTem (COMPOST) framework2. COM-
POST implemented the concepts of Invasive Software Com-
position (ISC) [1] for Java and XML. ISC is a static software
composition approach that can act as a basis to implement
a variety of composition techniques for arbitrary languages.
While COMPOST showed the applicability of the approach
for Java and later for XML, it was completely hand-written.
Adapting it for XML for instance, took considerable effort.

The aim of the Reuseware project is to build a framework for
ISC where new languages can be plugged in without man-
ual coding only by providing a grammar or a metamodel of
the language. It was clear from the beginning that Reuse-
ware should be developed as an Eclipse extension to profit
from the features already provided in the open IDE. The
second thing required was a meta language to describe lan-
guages that can be plugged in. After several experiments,
Ecore—an implementation of the OMG’s EMOF standard
[8]—of the Eclipse Modelling Framework (EMF) [10], was
chosen. We decided for Ecore because of its standard con-
formance and code generation facilities that integrate nicely
into Eclipse. Furthermore, since we initially focused on tex-
tual languages, we needed some grammar processing tooling
on top of Ecore. Thus, we developed EMFText [5] that was
initially part of Reuseware.

∗This research has been co-funded by the European Com-
mission in the 6th Framework Programme project Mod-
elplex contract no. 034081 (www.modelplex.org).

Eventually, Reuseware itself was developed using Ecore for
its metamodels, EMFText for textual and GMF [3] for graph-
ical specification languages. What proved to be most prob-
lematic was the metamodelling in Ecore. Since it does not
support behavior modelling, we had to add operation bodies
manually to the generated code. As a consequence of that,
we ended up with muddled generated and hand-written code
and an unnatural separation of methods into utility classes.
After several iterations and experiments, it became clear in
the end of 2008 that Reuseware needed a major redesign.

At that point, we saw the main problems of the implementa-
tions in 1) the too tight integration of generated and hand-
written code 2) the implementation of model (i.e., graph)
transformations in Java, which was unnatural, buggy and
hard to maintain. For both issues we desired a genera-
tive solution. Fujaba with its story diagram paradigm—to
model graph transformations—and its EMF code genera-
tion [2]—to generate operation bodies of Ecore models from
story diagrams—was the ideal candidate for that. This pa-
per summarizes our experience in redeveloping huge parts of
Reuseware with Fujaba. Furthermore, it explains extensions
we made to Fujaba’s EMF code generation.

2. DEVELOPING REUSEWARE
WITH FUJABA

Describing Reuseware in detail is out of scope of this paper
(please refer to [4, 6, 7] and the Reuseware website1). Never-
theless, we present the architecture of Reuseware in Sect. 2.1
to clarify which modelling technologies are used and where
Fujaba fits in. We explain how Fujaba was integrated into
our development toolchain and how it was customized for
our purposes in Sect. 2.2. Our experiences in modelling with
Fujaba are then described in Sections 2.3–2.5.

2.1 Reuseware Architecture
In Reuseware, we distinguish two user roles: composition
system developers and composition system users. A com-
position system implements a certain component and com-
position methodology. Module systems or aspect systems
are examples of composition systems. Composition systems
can usually only handle components (e.g., modules or as-
pects) written in a specific programming or modelling lan-
guage. Integrating new languages or new types of compo-
nents usually takes considerable effort. Reuseware however,
1
http://www.reuseware.org

2
http://www.the-compost-system.org













 






 







 

















Figure 1: Reuseware architecture overview

is a framework which can be easily instantiated by composi-
tion system developers to support new composition systems
for existing or newly developed languages. The such instan-
tiated framework may then be used by composition system
users to define components and composition programs (i.e.,
instantiations and compositions of components).

Reuseware is built around five metamodels shown in Fig. 1
(middle). Each metamodel is modelled as a class diagram in
Fujaba. Each of these class diagrams is then translated to an
Ecore model by Fujaba’s EMF code generation. Instances
of the metamodel are either derived by Reuseware or have a
concrete syntax that can be used by a composition system
developer or a composition system user directly.

The core metamodel is the Repository that models a pack-
age structure into which different types of elements can be
placed. The repository metamodel is instantiated by the
running Reuseware based on actual files in the workspace.
It provides a component oriented viewpoint on these files for
composition system users and developers alike.

A composition system developer may utilise two dedicated
languages for composition system development—one lan-
guage to define the concepts of a CompositionSystem and
one language to specify where these concepts are found in
a language defined as an Ecore metamodel. We call such a
specification a ReuseExtension for a given language. Both,
CompositionSystem and ReuseExtension language, have a
textual syntax defined with EMFText. The ReuseExtension
language embeds OCL [9] as expression language. These two
metamodels are only used for specification and do not have
operations that modify models. They therefore make use of
story diagrams only to simplify access to elements (e.g., to
find one item with a given name in a list).

A composition system user works with two kinds of arti-
facts: Fragments (the components in Reuseware) and Com-
positionPrograms (specifications for compositions of frag-
ments). A fragment has a composition interface through
which model elements are accessed (or modified) during a

composition. Concepts for composition interfaces are mod-
elled in the Fragment metamodel. Instances of that meta-
model are created by interpreting ReuseExtension specifica-
tions on arbitrary EMF models. For this, story diagrams are
used in combination with the OCL expressions embedded as
strings in ReuseExtension models.

Composition programs can again be created by interpreting
ReuseExtension models but also manually by a composition
system user. It depends on whether the composition system
developer specified a dedicated composition language for the
composition system or decided to use the generic composi-
tion language of Reuseware. This composition language is
defined in the CompositionProgram metamodel and has a
graphical syntax defined with GMF. In any case, parts of a
composition program can be derived and updated automat-
ically. This is specified with story diagrams.

2.2 Setup and Customization
The development was performed with the SVN versions of
Fujaba and the CodeGen2 plugin of Sept. 22nd 2008. To al-
low rapid development and testing, an ANT build script was
written that deletes the previous generated code, distributes
Ecore models and Java code generated by Fujaba correctly
over several Eclipse plugin projects and triggers EMF’s own
code generation. Consequently, two clicks are needed to gen-
erate the code: Code generation in Fujaba and running the
ANT script in Eclipse. The metamodelling was from now
on performed in Fujaba. We continued to use Eclipse for
EMFText modelling, GMF modelling and Java coding.

Some modifications of the code generation templates of Fu-
jaba were needed to add features not yet supported by Fu-
jaba’s EMF code generation. In the following we summarize
these modifications.

1. Splitting the metamodel The layered metamodel archi-
tecture depicted in Fig. 1 is realized by providing one
Ecore file and one Eclipse plugin per metamodel. The
dependencies between the plugins correspond to the
dependencies between the metamodels. To support
this splitting while preserving references between the
metamodels, the code generation was adjusted.

2. Referencing existing Ecore models As one can see in
Fig. 1 (left), some of the Reuseware metamodels de-
pend on the Ecore metamodel (i.e., the Ecore.ecore
file found in EMF) that is modelled in Ecore itself.
We made this metamodel available inside Fujaba by
importing the org.eclipse.emf.ecore.jar that contains
the code generated from Ecore.ecore. This allows us
at least to reference classes from that model in class
diagrams. The templates, however, did not support
referenced classes at all. We modified the templates to
create references to Ecore.ecore, which exists in every
EMF installation, when appropriate.

3. List return types In Ecore, return types of operations
can be multiple (upper bound > 1). This is not sup-
ported by Fujaba and its EMF code generation. Since
we needed this feature, we integrated it by introducing
the stereotype multiple in Fujaba. The extended code
generation sets the upper bound of an operation with



that stereotype to *. EMF expects the code of such
operations to return an org.eclipse.emf.util.EList<T>
where T is bound to the return type of the operation.
Consequently, the developer of the story pattern of a
multiple operation has to instantiate, fill and return
such an EList manually using Java statements.

4. String arrays In the case of strings (and other primitive
types) the above situation is better, because Fujaba of-
fers explicit primitive array types (e.g., StringArray) in
its standard library. We extended the code generation
to translate Fujaba’s StringArray into EList<String>.
Similar conversion could be done for the other primi-
tive types but are not needed in our case.

5. Navigating operations as links In story diagrams, we
sometimes needed to navigate a virtual path rather
than a direct reference in a model. Fujaba supports
this through path expressions. The drawback of these
expressions is that they are translated into an inter-
preter call which is only checked at runtime and always
requires a path expression interpreter. We needed path
expressions not for complex expressions, but to use the
result of an operation as path or to access references
of the Ecore metamodel, which are not known by Fu-
jaba (because Ecore.ecore was imported as jar file as
described above). This limited use of path expressions
enabled us to modify the templates to translate a path
expression into an operation call instead of calling the
expression interpreter. Additional code ensures that
the result of the operation is wrapped into an iterator
as expected by the rest of the template.

6. Support for eKeys To improve the serialization of ref-
erences between elements in XMI files, Ecore offers
the eKeys concept. An eKey is essentially a primary
key that identifies a model element (e.g., a name at-
tribute is a good candidate for an eKey). The serial-
ization then uses the eKey to identify cross-referenced
elements—instead of using the positions of the element
which is the default. Using positions can lead to prob-
lems when two XMI files reference each other and one
is changed independent of the other. This is the case
for the composition program GMF editor, where the
layout information (e.g., position of boxes) is saved in
a different file than the model elements. To support
eKeys, we introduced the stereotype ID in Fujaba. If
an attribute is stereotyped with ID, the extended tem-
plates define an eKey based on that attribute.

7. Generate code with bound list parameters A not vital
but nice extension is the binding of type parameters
in lists and iterators. Since Reuseware is developed
in Java5, the generated code produced compiler warn-
ings concerning unbound type parameters. When we
cleaned up the code, we addressed all compiler warn-
ings. One of this was to generate the type parameter
binding, which was not difficult because all required
type information is available during code generation.

To summarize, modifications 1 and 5 seem to be very spe-
cific for the development of Reuseware. All other extensions
however, could be beneficial for other projects as well. It
should be investigated, if and how these modifications can
be integrated into the current Fujaba trunk templates.

2.3 General Development Experience
Despite the use of two different development environments,
the development felt quite integrated. With the help of the
above mentioned build script, changes in the Fujaba models
are quickly updated in the Eclipse workspace. The overall
generation process takes less than 10sec (on 2.33 GHz Intel
Core 2 Duo) and requires only two clicks which is acceptable.

The adjustment of the templates themselves was manage-
able. It was done in a normal text editor. We have to
admit that we did not bother to acquire a proper velocity
template editor which could have eased the template modifi-
cation. Very positive was however that the CodeGen2 tem-
plates could be updated in a running Fujaba, which made
the debugging of changed templates easy.

Template customization was mainly a concern in the first
development phase. Here frequent updates had to be done
to support the desired behavior. Such adjustments however,
became less frequent and no adjustment were required in the
last six month—despite of ongoing development.

2.4 Working with Class Diagrams
Before we used Fujaba, the metamodels of Fig. 1 where de-
veloped directly in Eclipse. For this an open-source Ecore
diagram editor provided by the TOPCASED project3 was
utilised. We compare our experiences using this editor with
using the Fujaba class diagram editor.

The user experience of the Ecore diagram editor was in
general not very good. 1) Often the editor feels unstable
and sometimes a diagram looks different after we saved and
opened it again. Most annoying was the weak support for
automatic layouting such that drawing a straight line always
was a challenging task. 2) Copy and paste was not supported
very well. To perform such task, we used the graphical editor
in combination with the tree Ecore editor that comes with
Ecore itself (and supports copy and paste very well). How-
ever, keeping the such modified model synchronised with the
diagram representation was also not a strength of the dia-
gram editor. At some point, the diagram file could not be
opened anymore and the whole layout was lost. 3) Another
difficulty was the specification of bi-directional associations,
which are modelled as two uni-directional references that
are connected via an opposite relationship in Ecore. The
editor did not provide a facility to specify or represent those
reference together. Thus, specifying a bi-directional asso-
ciation was cumbersome and ugly in the diagram—it was
represented by two lines.

Although the class diagram editing was not the reason to
switch to Fujaba, we were very pleased that the class dia-
gram editor of Fujaba overcame the weaknesses of the Ecore
diagram editor. 1) Using the editor feels very smooth and
stable. Lines between classes are drawn straight automat-
ically when possible. 2) Copy and paste is supported to a
high degree and we were always able to perform a desired
restructuring without having to re-model anything. 3) Bi-
directional associations can be defined in Fujaba naturally.
The EMF code generation translates these associations into
two references in the Ecore model just as we expected.

3
http://www.topcased.org



2.5 Working with Story Diagrams
As mentioned, the main motivation to use Fujaba was to
define metamodel operations as story diagrams. As in class
diagrams, the combination of manual and automatic lay-
out gives the user a smooth editing experience and even the
(re)structuring of large diagrams was easy. Although we
tried to model as much as possible, the openness toward
calling Java code directly was vital to continue the work
at places were it was not obvious how to model the func-
tionality best. It was necessary to achieve the integration
with existing code—mainly with the EMF and an OCL in-
terpreter (cf. next section). The cut and paste functionality
was also very useful in particular to refactor story diagrams.

We can make the following improvement suggestions for
story diagrams based on our experience.

1. Calling story diagrams To call one story diagram from
another one is currently only possible by calling the
Java method that is generated from that story dia-
gram. This feels unnatural, since one calls the gener-
ated code (i.e., the Java method) and not the story dia-
gram (i.e., the UML operation) on the modelling level.
Because we wanted to stay on the modelling level, we
avoided to split story diagrams in the beginning and
the diagrams grew unnecessarily large. Having an ex-
plicit mechanism to call story diagrams would improve
the modelling experience here.

2. List return types Fujaba does not support a mechanism
to declare a return type of an operation as multiple.
One can set the return type to FHashSet, but this
does not say anything about the type of the values
that may be contained in the set and thus can not be
properly processed by the EMF code generation. It
is fine to work with the multiple stereotype extension
we presented in Sect. 2.2, but having the capability
directly integrated into Fujaba would be even nicer.

3. Import of existing Ecore models The Reuseware meta-
models depend on the Ecore metamodel (cf. Fig. 1,
left). The metamodel is modelled in Ecore itself (in
an ecore file). As mentioned, we imported this meta-
model by importing the jar file that contains the code
generated from the metamodel. This gave us access
to the metamodel types which was sufficient to model
class diagrams. In story diagrams however, we could
not model edges between instances of classes from the
Ecore metamodel since associations were not extracted
from the jar file. This information is however contained
in the ecore file. Providing an import for ecore files
into Fujaba (the inverse of the EMF code generation)
would greatly enhance the integration of Fujaba and
EMF and would allow people to define story diagrams
for their existing Ecore models.

Recently, we refactored our story diagrams and split them
into smaller diagrams such that each diagram fills one A4
page at maximum when printed. All Reuseware metamodels
together now contain 61 story diagrams (and 73 classes).

4
http://www.eclipse.org/modeling/mdt/?project=ocl

2.6 Tool Interoperability
Through Fujaba’s EMF code generation, the tool integration
worked very smooth. The Ecore models produced by the
code generation could be handled by any other EMF based
tool. As illustrated in Fig. 1, we used EMFText and GMF
to build editors for three of our five metamodels.

In one metamodel (ReuseExtension) we allow the specifica-
tion of OCL expressions as strings. To interpret these ex-
pressions, we use the MDT OCL interpreter4, which works
with Ecore models. We implemented a small Evaluator util-
ity class with static methods that initialize the OCL environ-
ment and use it to evaluate the embedded expressions. We
then use Fujaba’s ability to refer to arbitrary Java classes
and methods inside of story diagrams to call methods on the
Evaluator. In particular, it is used in to evaluate boolean
guard expressions of transitions and to derive values for at-
tribute assignments of an object in a story activity.

3. CONCLUSION
In this paper we reported on the development of Reuseware
with Fujaba. We conclude that using Fujaba significantly
improved the development experience and the quality of the
developed tooling. Thus using Fujaba was the correct deci-
sion. With story driven modelling we were able to increase
the amount of modelling and to improve separation of gen-
erated and hand-written code. We hope that the extensions
of the EMF code generation discussed in Sect. 2.2 and the
story diagram improvements suggested in Sect. 2.5 can help
to improve Fujaba in the future. This paper showed that
Fujaba’s EMF code generation is usable in practice to de-
velop EMF-based tools with Fujaba and to profit from story
driven modelling in EMF.

4. REFERENCES
[1] U. Aßmann. Invasive Software Composition. Springer,

Secaucus, NJ, USA, 2003.
[2] L. Geige, T. Buchmann, and A. Dotor. EMF Code

Generation with Fujaba. In Proc. of the 5th International
Fujaba Days. University of Kassel, 2007.

[3] R. C. Gronback. Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. Pearson
Education, 2009.

[4] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler.
On Language-Independent Model Modularisation. In
Transactions on Aspect-Oriented Software Development
VI, volume 5560 of LNCS. Springer, 2009.

[5] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and Refinement of Textual Syntax
for Models. In Proc. of ECMDA-FA ’09, volume 5562 of
LNCS. Springer, 2009.

[6] J. Johannes. Controlling Model-Driven Software
Development through Composition Systems. In Proc. of
NW-MODE ’09. Tampereen teknillinen yliopisto, 2009.

[7] J. Johannes, S. Zschaler, M. A. Fernández, A. Castillo,
D. S. Kolovos, and R. F. Paige. Abstracting Complex
Languages through Transformation and Composition. In
Proc. of MoDELS’09, volume 5795 of LNCS. Springer,
2009.

[8] Object Management Group. MOF 2.0 core specification.
OMG Document, Jan. 2006. www.omg.org/spec/MOF/2.0.

[9] Object Management Group. Object Constraint Language,
Version 2.0, May 2006. www.omg.org/spec/OCL/2.0.

[10] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
Eclipse Modeling Framework, 2nd Edition. Pearson
Education, 2008.


