
Round-trip Support for Invasive Software
Composition Systems

Jendrik Johannes, Roland Samlaus, and Mirko Seifert

Technische Universität Dresden, Computer Science Department,
Nöthnitzer Str. 46, 01187 Dresden, Germany

{jendrik.johannes,roland.samlaus,mirko.seifert}@tu-dresden.de

Abstract. The ever increasing complexity of software systems promotes
the reuse of software components to a topic of utter importance. By
reusing mature parts of software, large systems can be built with high
quality. The Reuseware Composition Framework can compose compo-
nents written in arbitrary software languages. Based on metamodeling
these components are merged invasively. But, even though language inde-
pendent composition is powerful to compose complex systems, one must
consider that composition is not the only activity in developing a working
systems by reuse. Many tests and validations can only be performed on
the composed system. At that point, it is hard to (a) know from which
component an error originates and (b) ascertain what the implications
of changing something in the composed system are.
This paper presents an approach to propagate changes back to the cor-
rect source components and discusses the possible implications of changes
made to composed systems. Furthermore, the implementation of the ap-
proach as an extension to the Reuseware Composition Framework is
presented using two example applications.

Key words: Round-trip Engineering, Invasive Software Composition,
Traceability

1 Introduction

To handle the increasing complexity software projects are faced with, many ways
of building software were introduced. Some of these are driven by abstraction,
for example the evolution from low-level programming languages like Assembler
to high level languages like Java. Others are focused on reuse of existing parts of
software. Composition systems somewhat belong to both categories and provide
means for software developers to build more complex systems in less time.

Composing software can be performed on different levels of abstraction (e.g.,
by merging models versus composing code) and in various ways. Depending on
the component model, the composition mechanism and the composition lan-
guage, different kinds of composition systems can be built. Invasive Software
Composition (ISC) [1] is one such composition technique that promotes compos-
ing software artefacts at development time based on their grammar. Since soft-
ware is usually expressed using formal languages, composing sentences of these



2 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

languages based on the underlying grammar seems natural. The term invasive
emphasizes that ISC allows composition on a very fine granularity. Components
can thus drastically change their behavior after composition.

The approach of ISC has shown its applicability for a variety of compo-
sition problems [1–3]. However, while ISC is a powerful technique, there is a
major drawback, which is not in particular specific to ISC, but rather applies
to many composition systems, that must be considered. Composed software sys-
tems eventually run as a whole. Even if components are carefully isolated, they
may interact with each other. Thus, whenever a failure indicates an error in the
system, the question at hand is which component contains the problem. In partic-
ular using ISC can complicate answering this question, because fragments—the
components of ISC—can be woven on a very fine-grained basis and employing
multiple composition steps. Determining which fragment contains an error is far
from trivial and very tedious if performed manually.

In addition to the problem of localizing the source component for a specific
error, there is a need for changing composed software directly rather than fixing
the source fragments. Instead of making repetitive changes to components and
recomposing, developers want to state which composition result they want. Frag-
ments should then be adopted automatically. Intuitively, propagating changes to
source fragments can have drastic implications. Fragments might be used multi-
ple times in one composition program or even by multiple composition programs,
in particular when they are reused from libraries. Thus, changes to fragments
must be carefully analysed.

The contribution of this paper is threefold. First, we show how extending
ISC with tracing mechanisms, can support the mapping of composed artefacts
to their source components. Second, we systematically analyse the implications
changes to composed programs can have. In particular we discuss how arising
conflicts can be resolved. Third, an implementation of the approach is presented.

This paper is structured as follows: Section 2 briefly explains the mechanisms
used by ISC and how Reuseware implements these to compose both textual code
and graphical model fragments. Afterwards the problems of tracing components
and changing composed artefacts are discussed in Sect. 3. Then, in Sect. 4, we
present how the Reuseware Composition Framework was extended to support
the backpropagation of changes to source fragments. An evaluation follows in
Sect. 5 where composition and editing of two different languages (Java and UML
Activity Diagrams) is presented. After a comparison to related work (Sect. 6),
we conclude and shed some light on future work in Sect. 7.

2 Background: Invasive Software Composition

ISC was first introduced in [1]. It proposes a composition technique based on
source code rewriting. The components in an ISC system are source code frag-
ments that may contain variation points. Variation points are places were other
fragments can be inserted during composition.



Round-trip Support for Invasive Software Composition Systems 3

node of model fragment

AST edge

additional  edge

a) 1

2 3

4 5

b) 1

2 3

4 5

1

node outside of model fragment1

Fig. 1. Reuse of partial ASTs (a) and model fragments (b)

ISC variation points are typed based on the grammar of the language used
to write the fragments. The grammar of a programming language, for instance,
might define the concept method. In an ISC system, variation points for meth-
ods can be defined at the same positions where methods usually occur to be
later replaced by concrete method fragments. This concept of grammar-based
modularization originates from the programming language BETA [4]. Previous
works [2, 5] on ISC generalised and extended the concepts of BETA. These ex-
tensions were implemented in the first version of the Reuseware Composition
Framework1, with which fragment composition systems for arbitrary languages
can be built based on their context-free grammar.

Recently, Reuseware was extended to support languages defined by meta-
models rather than context-free grammars [3]. A metamodel here is essentially a
typegraph that describes the non-context-free structure of a language such that
sentences of that language can be represented as graphs with a distinct span-
ning tree. Any metamodel described in the metalanguages EMOF [6] or Ecore
(defined by the Eclipse Modeling Framework (EMF)2) fulfills these properties.
An example is the UML2 metamodel [7]. A UML class diagram is an example
for a sentence in the UML2 language.

The consideration of context increases the power of ISC. Reuseware can now
be instantiated for arbitrary modelling languages and used in combination with a
variety of tools in Model-Driven Software Development (MDSD), where language
engineering by metamodeling is part of the development process.

In contrast to a traditional fragment (that is an instance of a context-free
grammar—a tree called Abstract Syntax Tree (AST)), a fragment that is an
instance of a metamodel is a graph with an underlying tree structure. Hence, it
is an AST with additional edges as, for example, obtained after name analysis
on the AST. Models in MDSD can be represented by such graphs. We use this
terminology in this paper and refer to a (possibly partial) graph with the term
model fragment or just fragment for short. Consequently, a node of such a graph
is sometimes called model element or element for short.

When an AST fragment is reused in traditional ISC, a root node is reused
together with all its children. The root node of an AST fragment can be any
node of a complete AST (since fragments can be partial sentences). In Fig. 1a
for example, Node 2 can be reused only together with Node 4 and 5.

1 http://reuseware.org/history
2 http://www.eclipse.org/emf



4 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

Fig. 2. A composition program defined in Reuseware’s composition program editor

When reusing a model fragment, the interconnections between nodes need to
be considered. The model fragment shown in Fig. 1b for instance, is comprised
of a tree and an additional edge. If one wants to reuse Node 2, Node 3 also
needs to be reused since it is connected with Node 5 which is a child of Node
2. An model fragment can thus have several root nodes that need to be treated
together during composition.

Two kinds of nodes are considered during composition: reference points and
variation points. Reference points are root nodes of model fragments (where one
fragment can have several roots) and variation points are nodes that may be
replaced during composition. Reference and variation points are grouped into
ports. All ports defined by a fragment make up its composition interface. Con-
crete compositions are defined by composition programs where ports of different
model fragments are connected by composition links. Ports may only be con-
nected if the reference and variation points behind them match; that is, there is
a sufficient number of reference points to replace the variation point, where the
types—defined by the metamodel—of the points match.

Figure 2 shows a composition program defined in Reuseware’s composition
program editor. The rounded boxes represent fragments and the dotted circles
attached to them are the ports of their composition interfaces. Each port has a
unique name and internally maps to one or many elements inside the fragment.
The lines between ports represent composition links. If ports that do not match
are linked, the composition link is marked with a warning.

A composition program can be executed to merge single model fragments
into a complete model by manipulating elements behind ports that are linked.
If several model fragments are involved, the composition is executed stepwise
following the algorithm outlined in [3]. For large composition programs, the
origin of single nodes inside the invasively merged result is hard, sometimes
impossible, to determine. This problem is tackled in this paper. More details
about Reuseware and its composition concepts are explained in the following
sections where needed. For further details please consult [3].

3 Approach

Establishing Round-trip support for a composition system can also be considered
building a decomposition system. If one can break up an assembled software into
its original parts, an inverse operator is available, and changes can be easily made
to the composite and transformed back to separate parts. Unfortunately, exactly



Round-trip Support for Invasive Software Composition Systems 5

Fragment A Fragment B

Composite

Composition

Change Composite‘

Fragment A‘ Fragment B‘

Composition

Composite‘‘

Traces

Fig. 3. Round-trip support using Backpropagation

finding such an inverse operator is not easy or even impossible for arbitrary
composition systems in general.

Thus, instead of seeking for an inverse operator (i.e., a decomposition op-
erator), a different way seems more promising for ISC. Inspired by [8], which
presents Round-trip support for aspect weaving of textual languages, we choose
to trace the composition of software artefacts as illustrated in Fig. 3. More
precisely, tracing means that the composition process is observed and each com-
position step is recorded to a log. By doing so, we can obtain a mapping from
elements in the composite to the respective elements in the source fragment.
In [8] this mapping is established on a very low level—using line numbers and
column positions. To propagate changes made to composites back to the respec-
tive source fragment such a mapping can be consulted. Instead of making the
change to the composite and applying an inverse operator, the changes are made
at the correct positions in the respective source fragment and the composition
is reexecuted. This step is called Replay in [8]. Note that the procedure shown
in Fig. 3 is not restricted to two source fragments or a one-step composition.

What may sound simple at first, turns out to be more complex. First, record-
ing the composition steps must be accomplished. This is merely a technical issue
and the easiest part. Second, the recorded log must be sufficient to map every
element from a composite to its source. This is self-evident for existing elements,
but different for elements that are manually added to a composite. These do not
have counterparts in the source fragments. Nevertheless, additions must be han-
dled properly to obtain full Round-trip support. Third, once a change has been
propagated back to the correct source fragment, the rerun of the composition
can cause problems. Changes may alter other parts of the composite, modify
other composites that use the same fragments or even cause composition to fail,
because the composition interface was changed.

In this section we examine these questions in detail. Following the previous
problem description, Sect. 3.1 describes how the composition process can be
traced in ISC systems. Subsequently, Sect. 3.2 classifies changes that can be
made to composed artefacts. As mentioned before, conflicts can arise when the
composition is executed again. These conflicts are discussed in Sect. 3.3.



6 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

3.1 Tracing Composition Program Execution

The composition technique employed by ISC is insertion of ASTs into each
other. Recent extensions (see Sect. 2) also allow to compose graphs instead of
trees. Thus, a composition program inserts graphs into graphs. These graphs are
typed (i.e., nodes are instances of meta classes) and own attributes (properties
of meta classes). Tracing a composition of such graphs essentially means storing
information about the origin (source fragment) of each node.

For tree-based compositions it is sufficient to store the root node whenever
a tree is inserted into another. This was accomplished in [8] using the line and
column information. If graph structures are composed, tracking each node may
be necessary. Technically, the composition system must be extended to support
the creation of log records whenever an atomic composition step is executed. For
each step a log entry must be created, that encapsulates information about which
fragment was inserted into which other fragment and the respective location.

By doing so, we obtain a mapping from elements in the composite to their
counterparts in the source fragment. In a multi-step composition this may not
necessarily be a direct mapping, but an indirect one. Nevertheless, this is all in-
formation needed to map nodes to their source fragment. Intuitively, this map-
ping can be used when attributes of a node (e.g., its name) is changed. But,
there are other types of modifications where the backpropagation is not that
easy. Thus, we will discuss the possible types of changes in the next section.

3.2 Backpropagating Different Types of Changes

One can distinguish between three different kinds of change operations: updates,
insertions and deletions. Updates are changes performed on attributes, insertions
refer to adding an element to the composite and deletions correspondingly refer
to the removal of an element.

Updates can be handled by mapping the node, containing the changed at-
tribute, back to its source using the traces. Thus, the attribute can simply be
changed in the original node and the change is propagated back successfully.

For deletions and insertions the scenario is more complex. Here, we distin-
guish between modifications “within” and “between” fragments. To explain the
difference, lets recapitulate the structure of the composites. As we operate on
graphs, composites contain nodes connected by edges. Each node corresponds to
a single source fragment. If fragments contain multiple nodes, which is usually
the case, these nodes can be found connected to each other in the composite.
Now, adding or deleting elements in such a coherent part of the composite is
called an internal edit. In contrast, some elements in the composite reside on
variation points. Modifying such elements is called an interface edit.

Insertions of new elements can have different intents according to these edit
types. Since new elements did not exist before, they never have a counterpart in
the source fragments. Obviously, inserted elements must be added to the source
fragments in such a way that recomposition leads to a composite containing the
inserted element at the correct position. For internal edits this corresponds to



Round-trip Support for Invasive Software Composition Systems 7

Fig. 4a. The node that is added to the composite (depicted by a bordered grey
circle) must be added to fragment B to obtain the same result after composing
again. If it is added to one of the other fragments (A or C), the composition
result would not only be different, but not contain the new node at the position
where it was added. Thus, internal insertions can and must be handled by adding
the new node to the respective source fragment.

CompositeComposite

Fragment A

Fragment B Fragment C

Fragment A Fragment B Fragment C

Composition

Fragment A Fragment B Fragment C

Composition

a) b)

Fragment A

Fragment B Fragment C

Node Variation Point Reference Added node Potential source node

Fragment D

Fig. 4. Possible insert scenarios

However, some node insertions are interface edits. Consider, for example,
Fig. 4b. An insertion of a new node between (depicted by a bordered grey circle)
can not be clearly assigned to fragment A, B or C. The new node could be added
one fragment or the other—recomposition would create the same composite.
Adding this node could even mean that a new fragment D must be created
containing the just added node.

We call this the gap edit problem. A basic example for this problem can be
observed when editing programs that were augmented with advices using Aspect-
oriented Programming (AOP). If code is added to the composed program at the
begin or end of an advice, it is not clear whether the added code belongs to the
core or the advice. We will present a concrete example in Sect. 5.1.

Deletions can be propagated back by removing the corresponding element
in the source fragment if they are internal. Interface deletions, however, can have
different meanings. For example, if an element is removed that was inserted at a
variation point during the composition. In this case the intent of the modification
can be (a) to remove the corresponding element in the source fragment, (b) to
remove the variation point or (c) to remove the link between the source fragment
and the variation point in the composition program. All three cases are equally
valid and can not be distinguished automatically.



8 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

After looking at the backpropagation of atomic changes we can say that
updates can be handled automatically, but insertions and deletions may require
developer decisions. However, propagating changes to the source fragment was
merely the first step of our approach (see again Fig. 3). After the changes are
made to the respective source fragment, the composition is executed again. This
may cause further problems as we will discuss in the next section.

3.3 Change Conflicts

As mentioned in the general description of our approach, the second step in
synchronizing composites and fragments when change is made to the former, is
recomposition. The execution of the composition propagates the changes just
made to fragments to the composite. If this succeeds and the changes originally
made to the composite are present again, we consider the synchronization to be
successful. Unfortunately, this is not always the case.

First, a fragment can be used multiple times in a composition program. Thus,
it potentially appears more than once in the composite. Changes made to such
a fragment are consequently propagated to all its occurrences in the composite.
This corresponds to changing an advice in AOP. While this is appropriate in
some scenarios, in others the intention behind a change can be completely differ-
ent. For example, the intention behind a single change might be to modify only
the particular part of the composite that was changed directly by the developer.

Second, a fragment can be used in multiple composition programs. Again the
execution of the composition will propagate changes to places other than the one
that was changed by the developer directly. Similar to the just mentioned first
case, the intention of the developer is not clear. Some modifications might be
conveniently applied to the whole set of composites, while others are meant to
change only exactly the single composite that was manually modified.

Third, modifications may cause a different composition result if they change
the composition interface of a fragment. This can happen when elements rep-
resenting reference or variation points (cf. Sect 2) are changed. The attributes
of these elements determine if they represent a reference or variation point. For
example, an element named VP <port name> might represent a variation point
and an element named RP <port name> a reference point (where <port name>
identifies the port to which the element belongs). If such an attribute (e.g.,
RP Port1) is changed (e.g., into NewName) it may alter ports (e.g., NewName is
removed from Port1 since it no longer starts with RP ).

In general, one can say that whenever reexecuting a composition causes
more changes than the ones that triggered the synchronization, the intent of
the changes must be clarified. Modifications might be meant to apply to all oc-
currences or only a specific one. The intention of a change can be either specific
to a single change or general for a set of changes. In the first case, developers
must provide information about their intent for each change. If the intention
is more general (e.g., modifications are always meant to be propagated within
one composite, but not to others), developers can state their intent once and
subsequent synchronizations handle changes automatically.



Round-trip Support for Invasive Software Composition Systems 9

Now that we have argued that it is impossible to determine the intent of each
change fully automatically, two more questions arise:

1. How to determine the developer’s intent? Developers may not make
changes with a clear intent in mind. They rather experimentally perform
changes and realize the different implications only after recomposition. Thus,
the question is how we can support developers in determining their intent.

2. How to translate the intent into action? Once the intent of the devel-
oper (e.g., “change this particular element and no other” or “change every
occurrence of this element”) is found, appropriate actions must be taken.
This might require not only modification of the original fragments, but also
of the composition programs. The latter is needed if a change should not be
propagated to all other occurrences. In this case fragments need to be copied
and composition programs need to be adopted to use the copies instead of
the original fragments.

4 Implementation

In order to give answers to the questions raised in the previous section, we
extended the Reuseware Composition Framework with support for change back-
propagation and conflict resolution. First, to propagate manual changes to source
fragments, additional information must be gathered during the composition pro-
cess. Before a fragment is composed into another one, each of its elements is
copied by Reuseware. This copying step was extended such that each copied
element in a composite is linked to its respective original. Since Reuseware and
the modelling tools it works with are based on the EMF, this was technically re-
alized by attaching additional information to the elements through a mechanism
called EMF Adapters.

The second functionality is observing the manual editing of composed models.
These edits are done in EMF-based (graphical or textual) model editors. Thus,
EMF Adapters, which can also serve as listeners, are used to notice changes
during editing. When the developers intent of a particular change is unclear, a
so-called ConflictResolver is consulted. We added an extension point to Reuse-
ware at which ConflictResolvers can be registered and implemented one—the
InteractiveConflictResolver. With the InteractiveConflictResolver we
tackle the two questions raised in Sect. 3.3 in a generic way. In the following we
show how it clarifies the developer intent at different positions (Question 1) and
how Reuseware reacts upon the intent (Question 2).

Identifying the source fragment. Remember the three change possibil-
ities discused in Sect. 3.2: insertions, deletions and updates. The first conflict
that requires developer interaction occurs only in the case of insertions and
deletions. The gap edit problem (Sect. 3.3) requires the developer to specify to
which source fragment the change should be backpropagated. By analysing the
change, the tool assembles a list of possible sources to only present valid options
to the developer. Figure 5 shows the corresponding dialogue presented by the
InteractiveConflictResolver.



10 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

Fig. 5. Gap edit conflict triggered by a change in a composed model

Propagating the change. The next conflict occurs for any type of change,
when the source fragment is used more than once either in the same or in other
compositions. In general, there are three options to resolve this issue: (1) dis-
card the modification completely, (2) propagate the modification and accept all
implied changes or (3) create or copy source fragments to include the changes
and adapt the composition program accordingly. The first option is the exit for
the developer if he realises at this point that the change was wrong. It is simply
resolved by reverting the change. With the second option, the developer confirms
that the change was made with the intent to propagate it forward to all uses of
the corresponding source fragment. It is translated into action by changing the
source fragment. The developer should choose the third option if his intention
was to modify exactly the changed element only and not to forward propagate
modifications elsewhere. This choice triggers another developer interaction, in
which the developer has to define a name for a copy of the corresponding source
fragment. The tool then copies the fragment, stores it in the repository under the
new name, and changes the current composition program to use the copy. The
third option might be the only choice in cases where the fragment in question is
reused from a library and all the implications of changing such a fragment can
not be detected by the system or the developer.

Review forward propagation result. After the developer decided for
option two or three above, he gets the chance to review all the implications of
his decision. This is in particular important when forward propagation to all
occurrences was chosen. However, any change in a source fragment can have
unpredicted implications when it changes the fragment’s composition interface.
To support the developer, the tool composes a preview of all affected composites
by temporarily changing the source fragment. It also provides a compare view
(utilising the EMF compare tool3) where the developer can directly compare the
recomposed with his manual modified model.

Final confirmation and actions. If the developer thinks that the cho-
sen propagation method will not affect any composition in a negative way, he
can confirm his decision and the temporary change of source fragments will be
persistent. He can also choose to discard his initial change at this point which
will roll-back the temporarily made modifications. If the backpropagation was

3 http://www.eclipse.org/modeling/emft/?project=compare



Round-trip Support for Invasive Software Composition Systems 11

accepted despite of errors that may have appeared in composition programs,
the developer has to do additional adjustment there. Luckily, Reuseware reports
all such errors directly in its graphical composition program editor, where the
problems can be reviewed and resolved.

To summarise, the implemented InteractiveConflictResolver allows to
easily assess the implications of a modification and choose an option that reflects
the intent of the modification made. For dealing with changes that can have more
than one meaning this is the best one can do. For specific applications or projects,
default strategies (e.g., always copy fragments) could replace parts of the GUI
through an alternative ConflictResolver.

5 Example Applications

In this section we use two example applications to show how the extended Reuse-
ware is used to synchronise modifications and to resolve conflicts. To stress that
this can be done for arbitrary languages, both textual and graphical, we present
one application on using Java in Sect. 5.1 and a second one using UML Activity
Diagrams in Sect. 5.2.

5.1 Fixing Bugs in Composed Java Programs

In previous works we successfully used ISC to compose programs and in par-
ticular to introduce new language features (e.g., aspect-orientation or modular-
ization [2, 3]). The research in this area showed, that fragment composition is
powerful, but also revealed, that it can interfere with other development activ-
ities. This is because composition is forward-oriented, but composed fragments
must usually undergo further validation (e.g., unit tests). Consequently, if errors
are found, they must be fixed—ideally right where they appear—in the com-
posed fragment. To avoid inconsistencies these fixes must be propagated to the
original source fragments.

To show that the presented work can serve as a solution to this problem, we
used Reuseware to compose a core application with additional code that imple-
ments security checks. To perform these checks, methods that provide access to
sensitive data are augmented with a static call to class SecurityManager that
throws an exception if the current thread does not have the needed privileges.
Figure 6 shows two fragments A and B and the composition program we used
to generate the composition result (Note: fields were omitted).

In this example the statements of every method were selected to be variation
points. Thus, each method can be connected to another fragment in a composi-
tion program. Consequently, the fragment B is inserted into the two methods as
shown in the composite in Fig. 6.

Now consider a developer executes a unit test on the composed fragment.
Assume, the test fails because the method getSSN() returns the social security
number even though the calling thread does not have the required privilege AUTH.
Therefore the test expects that an exception is thrown. Subsequent debugging



12 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

Fragment A:

public class Customer {
public String getName(){
return name;

}
public String getSSN(){
return ssn;

}
}

Fragment B:

SecurityManager.
check(READ);

Composite:

public class Customer {
public String getName(){
SecurityManager.check(READ);
return name;

}
public String getSSN(){
SecurityManager.check(READ);
return ssn;

}
}

Fig. 6. Initial Composition of Java Fragments

reveals the error—there is no check for this privilege. Naturally, the developer
wants to fix the bug right away and then run the unit test again to verify that
the modification indeed removes the undesired behaviour. Therefore he adds a
second statement SecurityManager.check(AUTH) to make sure the exception
expected by the test is thrown.

Now the test succeeds, but the fix must be propagated to the source frag-
ments to restore a consistent state. In this case the gap edit problem is raised.
The new statement is inserted “between” the two fragments. It could be added
to fragment A as well as fragment B. The developer decides to add the new state-
ment to fragment B, because a security check does not belong to the application
core. But, fragment B occurs twice and a second decision is needed. Either all
occurrences must be changed or only one. Retrieving a customers name does not
need the privilege AUTH, so he picks the latter. Thus, fragment B is copied and
the composition program is automatically changed as depicted in Fig. 7.

5.2 Business Process Modelling with UML Activity Diagrams

Processes supported by software systems can be described by behaviour mod-
elling using UML Activity Diagrams. Often, general processes (e.g., a process for
ordering goods in a shopping system) can be defined once and specialised for a
concrete system. Such specialisations can be performed by invasive composition
with Reuseware, as demonstrated in [3]. Each fork, join or merge node of an ac-
tivity is used as reference point and each initial or final node as variation point.

Fragment A:

public class Customer {
public String getName(){
return name;

}
public String getSSN(){
return ssn;

}
}

Fragment B:

SecurityManager.
check(READ);

Composite:

public class Customer {
public String getName(){
SecurityManager.check(READ);
return name;

}
public String getSSN(){
SecurityManager.check(READ);
SecurityManager.check(AUTH);
return ssn;

}
}

Copy of Fragment B:

SecurityManager.
check(READ);
SecurityManager.
check(AUTH);

Fig. 7. Modified Composition of Java Fragments



Round-trip Support for Invasive Software Composition Systems 13

Fig. 8. The original CreditCard.uml fragment

Each reference and variation point is mapped to a port with the same name as
the node in upper-case. This way, activities can be woven into each other by
effectively replacing initial with fork and final with join (or merge) nodes.

In the scenario described in [3] an activity for a payment specific consistency
check (CreditCard.uml shown in Fig. 8) is added to a generic ordering process
through the composition program of Fig. 9a. The composed model (cf. Fig. 10)
can then be used to perform model-based performance simulation of the com-
posed system as done in [9]. In this setting, results from the simulation are fed
back into the activity diagram to suggest process improvements. Thus, it is an
analysis that can only be performed on the composed model.

In the example, the simulation might report that the CreditCardCheck ac-
tion is indeed a bottle neck delaying the whole activity since it involves commu-
nicating with external systems. The process developer might come up with the
solution to not wait for the CreditCardCheck before continuing with order pro-
cessing, but rather let it continue in parallel to other actions and cancel the whole
activity later in the case the CreditCardCheck fails. This can be expressed, as
shown in Fig. 11, by removing Join1, introducing a new join node Join2 and
altering the outgoing transition of CreditCardCheck to point at Join2.

Since the new element Join2 is connected with elements originating from
both CreditCard.uml and OrderProcessing.uml, the gap edit problem applies.
Furthermore, the composition requires adjustments, since Join1 and Join2, be-
ing join nodes, both influence the composition interface.

When the developer performs the change, the synchronization mechanism
informs him about a conflict. After he decided that the new element should
be added to OrderProcessing.uml (since it is part of the main ordering process
flow), the tooling lets him review the impact of his decision. By reviewing the
recomposed model in the compare view, he realises that his change was not
preserved after recomposition—the altered transition is now missing.

The developer discovers that the composition program is now erroneous.
Reuseware reports erorrs directly in its graphical composition program editor

Fig. 9. Composition program (a) before and (b) after modification



14 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

Fig. 10. Composition of the OrderProcessing.uml and CreditCard.uml fragments

(cf. Fig. 9). In this case, the tool reports, as shown in Fig. 9b, that the port JOIN1
is missing and the link between JOIN1 and SUCCESS is therefore invalid. It also
updates the interface of the OrderProcessing.uml fragment in the composition
program, making JOIN2 appear as additional port. The developer can now adjust
the composition program by linking SUCCESS with JOIN2.

This manual alteration of the composition program in obvious cases like this
could possibly be automated as well. However, it is important to stress that,
whatever complex changes the developer does on a composed model, failing to
reexecute the composition will be immediately reported. The developer can then
resolve the issue by investigating the errors reported by the composition engine.

6 Related Work

The term Round-trip Engineering (RTE) was first mentioned in the context of
MDSD in [10] and besides a description of arising issues, general qualities that
are desirable were given. Our approach offers these qualities, namely the ability
to manage trace information, the intuitiveness and conciseness, as well as under-
standing the intention of users and assistance to detect conflicts. Furthermore,
we provide assistance to resolve conflicts. A more formal description of Auto-
matic Round-trip Engineering was given in [11]. However, as shown in this paper,
the domain transformations used in ISC (i.e., the composition operators) are not

Fig. 11. Manually modified composed model



Round-trip Support for Invasive Software Composition Systems 15

always invertible. This prevents us from completely automating our Round-trip
support as described in [11].

Not necessarily based on models, but in the field of RTE, the AOP commu-
nity investigated how the results of invasive aspect weaving can be analysed [12]
and changed [8]. In contrast to ISC the first part is already problematic for some
AOP implementations, that do not weave source, but binary code. Those that
compose source fragments often do so on a textual basis. As a consequence,
the composition programs are not strongly typed. Rather strings are inserted
into other strings. Thus, detecting broken composition programs, as we did in
Sect. 5.2 is not possible. In addition we process graphs rather than trees. Ref-
erences are therefore safely preserved during composition and backpropagation.
In contrast, tree-based approaches (e.g., [8]) must use identifiers which can only
be composed safely if they are unique. However, unique identifiers are hard to
choose if the set of compositions a fragment is used in is not fixed.

As Reuseware operates on models, compositions can also be considered as
model transformation. Hence, bidirectional transformations [13] are directly re-
lated to this work. However, mapping compositions to bidirectional rules imposes
some problems, which is why we choose a different approach. To illustrate this
problems, we will compare our work with Triple Graph Grammars (TGGs) [14],
which are the most sophisticated approach in this area.

TGGs can be used to link models with rules that can be executed both for-
ward and backward. Mapping composition programs to such rules is therefore a
possibility. However, it is not clear whether copying fragments, which is neces-
sary in ISC, can be realised with TGG rules. Moreover, TGGs synchronize model
elements only. Propagating changes to attributes, which we consider a frequent
activity for editing graphical models, needs extensions to the classical TGG for-
malism. Furthermore, TGGs can propagate the addition and deletion of model
elements, but do not distinguish between fragments (i.e., parts of the models).
As discussed earlier, it is important to detect where changes are propagated to.
If one cannot detect the propagation of a modification to another occurrence of a
fragment or to another composite, changes are always propagated. Fine-grained
decisions about the intent of a change, as we allow them, are not possible.

7 Conclusions and Future Work

Composing artefacts using ISC is a powerful approach for reusing parts of soft-
ware. This paper showed how to extend ISC with Round-trip support. Results
of compositions can be modified and synchronized with their source fragments.
This promotes ISC from a forward directed method to a bidirectional composi-
tion technique. Admittedly, the synchronization or propagation process cannot
always be performed automatically. In some cases the intent of the developer
must be known to correctly transform the changes made to a composite to source
fragments or the composition program. This is not a drawback of our approach,
but merely bound to the specific composition technique employed by ISC.



16 Jendrik Johannes, Roland Samlaus, and Mirko Seifert

The approach was implemented as an extension to the Reuseware Compo-
sition Framework to show its practical applicability. Furthermore, to ease the
process of determining the intent of modifications, different possibilities to show
the implications of a change have been investigated and presented.

Still, important questions remain open. First, only basic composition oper-
ations where studied in detail in this paper. If more complex operations are
involved in composition, the round-trip is less automatic. This could be the case
when a modified element was part of different ports on the composition interface
or was extended with a number of elements during several composition steps. In
such cases, the composition programs breaks and requires manual adjustment.
As mentioned, the good thing is that conflicts are always immediately visible
due to the composition engine’s error reporting. However, we also showed that
composition programs can be automatically corrected to a certain degree (cf.
Sect. 5.1). In the future, we will study which other automatic adjustments to
the composition programs are possible (e.g., the one indicated in Sect. 5.2).

Second, all changes were propagated individually. Our evaluation turned out
that this is not feasible in some scenarios. Asking developers after each keystroke
or mouse click about their intention and whether they want to put the new char-
acter or arrow into one fragment or the other is not appropriate. Rather, develop-
ers should be able to make a set of changes and then trigger the synchronization.
However, this may result in more complex conflicts, because modifications within
one change set may interfere. Analysing such conflicts is therefore also subject
to future work.

Third, the intention of changes (and in particular the fact that it might not
be known) prevents us from fully automating the Round-trip support. Nonethe-
less, for some composition applications or languages there might be reasonable
default strategies. For example, when ISC is used to introduce aspect-orientation
to a language, edits in an advice may always be propagated to all places where
the advice is inserted. When fragments have proven stable and general reusable
over time they can be published in fragment libraries to be reused in different
systems. Such maturity information about fragments can be taken into account
for automatic decision for the gap edit problem (e.g., always modify the less
mature fragment) and for deciding between modification and replacement by
copy (e.g., always copy and never modify fragments from public libraries). This
functionality could be added by annotating fragments in Reuseware with a ma-
turity status. Furthermore, composition programs could hold information about
the propagation strategy to use. This way, developers can explicitly state their
intent for individual composition steps.

References

1. Aßmann, U.: Invasive Software Composition. 1 edn. Springer Verlag (April 2003)

2. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extending
Grammars and Metamodels for Reuse: The Reuseware Approach. IET Software
2(3) (2008) 165–184



Round-trip Support for Invasive Software Composition Systems 17

3. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-
Independent Model Modularisation. Transactions on Aspect-Oriented Develop-
ment, Special Issue on Aspects and MDE (2009)

4. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming
in the BETA Programming Language. Addison-Wesley, Reading, MA, USA (1993)

5. Henriksson, J.: A Lightweight Framework for Universal Fragment Composition—
with an application in the Semantic Web. PhD thesis, Technische Universität
Dresden (January 2009)

6. Object Management Group: MOF 2.0 core specification. OMG Document (January
2006) URL http://www.omg.org/spec/MOF/2.0.

7. Object Management Group: Unified Modeling Language: Superstructure Version
2.1.2. Final Adopted Specification formal/2007-11-02 (2007)

8. Chalabine, M., Kessler, C.: A Formal Framework for Automated Round-Trip Soft-
ware Engineering in Static Aspect Weaving and Transformations. In: Proceedings
of 29th International Conference on Software Engineering (ICSE 2007), Minneapo-
lis, USA (2007) 137–146

9. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven
Engineering: Model-Driven Performance Engineering. In: MoDELS’2005 Satel-
lite Events: Revised Selected Papers, Lecture Notes in Computer Science 5002,
Springer (2007)

10. Sendall, S., Küster, J.M.: Taming Model Round-Trip Engineering. In: Proceedings
of Workshop on Best Practices for Model-Driven Software Development, Vancou-
ver, Canada (2004)

11. Aßmann, U.: Automatic Roundtrip Engineering. Electronic Notes in Theoretical
Computer Science 82(5) (2003)

12. Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J.: Debugging Aspect-Enabled
Programs. In: Proceedings of the 6th International Symposium on Software Com-
position (SC2007). (2007) 209–225

13. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations.
In: Proceedings of 4th International Conference on Graph Transformations
(ICGT2008), Leicester, United Kingdom. (2008) 1–17

14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG ‘94), Herrsching, Germany, Springer (1994)


