
Concern-based (de)composition of Model-Driven
Software Development Processes

Jendrik Johannes? and Uwe Aßmann

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
{jendrik.johannes|uwe.assmann}@tu-dresden.de

Abstract. An MDSD process is often organised as transformation chain.
This can threaten the Separation of Concerns (SoC) principle, because
information is replicated in, scattered over, and tangled in different mod-
els. Aspect-Oriented Software Development (AOSD) supports SoC to
avoid such scatterings and tangling of information. Although there are
integrations of MDSD and AOSD, there is no approach that uses con-
cern separation for all artifacts (documents, models, code) involved in an
MDSD process as the primary (de)composition method for the complete
process. In this paper, we propose such an approach called ModelSoC. It
extends the hyperspace model for multi-dimensional SoC to deal with in-
formation that is replicated in different models. We present a ModelSoC
implementation based on our Reuseware framework that organises all in-
formation provided in arbitrary models during development in a concern
space and composes integrated views as well as the final system from
that. This is shown on the development of a demonstrator system.

1 Introduction

Model-Driven Software Development (MDSD) aims at decreasing the effort and
costs for developing complex software systems. This is achieved by reusing infor-
mation that is captured in artifacts (documents, diagrams, etc.) that are created
during the development of such a system. These artifacts are regarded as models
of the system and are integrated by means of transformation and composition.
By this, the final system is eventually generated—without the need to manually
implement the parts of the system that are already defined in models.

MDSD profits from the OMG’s metamodelling standards MOF and OCL
and their adoption in technologies such as the Eclipse Modelling Framework
(EMF) [1]. These technologies include language-independent tools (e.g., model
transformation engines) and meta tools for creating Domain-Specific Modelling
Languages (DSMLs). The standards and tools allow not only for cost-efficient
engineering of new DSMLs but also for the seamless integration of these DSMLs

? This research has been co-funded by the European Commission in the 6th Framework
Programme project Modelplex contract no. 034081 (cf., www.modelplex.org).

2 Jendrik Johannes and Uwe Aßmann

into MDSD processes. Hence, MDSD processes can be tailored with languages
suitable for the task at hand and domain experts can participate in development
directly. Ultimately, however, the models defined in DSMLs have to be trans-
formed into an implementation to make use of the information they contain. This
is often performed stepwise by transforming them into more detailed models and
refining these before generating code, which might require further refinement.

In an MDSD process that is organised as transformation chain, replication,
scattering and tangling of information can occur when information is repeatedly
extracted and distributed over different models. This is the source of traceability
and consistency problems which are often tackled by additional techniques on
top of model transformations (e.g., publications in [2]). The problem can also
be regarded as a Separation of Concerns (SoC) issue as investigated in the area
of Aspect-Oriented Software Development (AOSD) [3]. Originally focused on
programming languages, AOSD is now concerned with all parts of a software
development process and thus there are a number of approaches that integrate
ideas and technologies from MDSD and AOSD (e.g., publications in [4]). How-
ever, usage of AOSD in MDSD so far mostly focused on either specific parts of
the development process (e.g., [5] or [6] for analysis/design; [7] or [8] for imple-
mentation) or offered a technology for model aspect weaving (e.g., [9]) without a
SoC methodology. Although different approaches can be combined to use AOSD
methods in all phases of MDSD processes, there exists, to the best of our knowl-
edge, no approach and no universal technology that organises an MDSD process
by concern (de)composition rather than transformation chain (de)composition.

In this paper we present such an approach—the ModelSoC approach as an
extension of the hyperspace model for multi-dimensional separation of concern
defined by Ossher and Tarr [10]—and a supporting technology. The hyperspace
model is well suited as a base for ModelSoC, since it (a) explicitly supports dif-
ferent dimensions for decomposition which is needed because in different DSMLs
information is decomposed along different dimensions and (b) is independent of a
concrete language (i.e., not limited to e.g. Java) or a concrete language paradigm
(i.e., not limited to e.g. object-oriented languages). The approach is implemented
in our Reuseware Composition Framework [11].

Our contribution is thus twofold. First, we introduce ModelSoC as an ex-
tension of the hyperspace model that can handle replication of information in
different formats and usage of DSMLs for composing information. Second, we
introduce Reuseware as a framework technology that enables usage of ModelSoC
in practice in combination with existing Eclipse-based modelling tools. A com-
parable technology is not available for the hyperspace model itself that was
implemented for Java only in the Hyper/J [10] and CME [12] tools.

The paper is structured as follows: In Sect. 2, we introduce an MDSD process
as an example to motivate the need for ModelSoC which we describe in Sect. 3.
Next, we discuss how the Reuseware framework is used to put ModelSoC into
practice in Sect. 4. The motivating example is revisited in Sect. 5, where we show
how it is realised with ModelSoC and discuss advantages of that. In Sect. 6, we
discuss related work and conclude the paper in Sect. 7.

Concern-based (de)composition of MDSD Processes 3

2 Motivating Example

In the following, we motivate our work using the model-driven development of
a reservation system in which customers can book tickets and perform other
related activities. This demonstrator system is inspired by an example from [13].
Figure 1a shows the process defined as model transformation chain. Five types of
models1 are used: OpenOffice use case documents (cf., [13] for structure details),
UML use case models [14] annotated with invariants (as introduced in [13]),
UML class models, Value Flow (a data flow DSML2) models and Java [15].

In the chain, information is transported between different models—i.e., differ-
ent views on the system—by model transformations. This is not only necessary
to integrate all information into the Java code at the end of the chain, but also
to connect new information in different views to existing information. For exam-
ple, the information about actors participating in use cases, initially defined in
OpenOffice documents, is needed in all viewpoints, since it is central information
around which other information is defined.

An example of adding information is the refinement of a UML use case model,
which we illustrate on the example of the use case BookTicket in Fig. 1a. Follow-
ing [13], UML use cases are annotated with value added invariants. This means,
that we define values (i.e., business objects) for each actor it holds before and
after the execution of the use case. This is done by annotating the actors (not
shown in Fig. 1). The total numbers of values in a use case needs to be invariant
(i.e., a value that exists before use case execution needs still to be there after
execution and a value can not appear out of nowhere). According to [13], viola-
tions of invariants may occur if there are actors that are not visible from outside
the system (e.g., a passive storage that can not be observed as acting entity from
the outside). They propose to add such actors in the UML use case view (but
not to the use case documents). In the example of the BookTicket use case (cf.,
[13]), the actor Customer has an Account and an Address before execution of
the use case and a Shipment and a Seat after execution. The Address is passed
to the Clerk, while the Account is passed to the Bank. The Shipment is received
from the Clerk. For the Seat however, there is no actor yet owning it before use
case execution. Therefore, the new actor Hall, which owns the Seat before use
case execution, is introduced in the UML use case view (Fig. 1a middle).

Although the transformation chain approach enables us to add information
to intermediate models (e.g., adding the Hall actor) it has a couple of draw-
backs that are often a source of criticism on MDSD. First, once an intermediate
model is refined manually, it cannot be recreated automatically, which essentially
forbids modifications of models prior in the chain what leads to model inconsis-
tencies that have to be fixed manually. For example, after we added Hall in the
UML use case view, we cannot change the OpenOffice document and reexecute
the transformation to UML use cases without loosing the information about

1 we treat all artifacts in an MDSD process as models, including documents and code;
for each model, a metamodel is available

2 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Value_Flow

4 Jendrik Johannes and Uwe Aßmann

Value Flow

Java

UML class

UML class

Value Flow

UML use case

OpenOffice

Java

transformation
chain

decomposition

concern
based

decomposition Manual
Modelled

Generated

Generated and
Refined Value Flow

(increment)

Java
(increment)

+

+

+

+

+
?

?

?

?

? Concern
Analysis

Concern
Composition

+

Model
Transformation

(b)

(a)

legend
C

o
n

ce
rn

 M
a
n

a
g

e
m

e
n
t

S
y
st

e
m

BookTicket
Actor(s):
 Customer,
 Clerk,
 Bank

BookTicket
Actor(s):
 Customer,
 Clerk,
 Bank

Fig. 1. MDSD process organised by: (a) transformation chain (b) concern separation

Hall. Second, similar information is extracted several times in the chain, which
requires additional effort when defining the transformations. For example, the
information about actors is extracted first from the OpenOffice document, then
from the UML use case model (by two transformations) and finally from both
Value Flow and UML class models to produce the Java code. Third, information
is difficult to localise. When a particular information about the system has to be
changed, one needs to know, where the information was defined. For example,
if one discovers in the Java code that something about Hall should be changed,
it is difficult to trace if Hall was introduced in the OpenOffice or the UML use
case view, because the information has been transformed several times.

To overcome these problems, we propose a different way of organising an
MDSD process that is illustrated for the example in Fig. 1b. Instead of refining
generated models, we propose to define additional information in separate mod-
els (Fig. 1b left). Here, the Hall actor is defined in a UML model, but separate
from the generated UML use case model. All information about the system is or-
ganised in a central place—the concern management system—(Fig. 1b middle).
Integrated views can be produced by selecting the information required from the
pool of all information, transforming it into the correct format and composing
it into an integrated model (Fig. 1b right). Instead of decomposing the MDSD
process along the transformation chain, the information that is modelled is de-
composed and organised w.r.t. the concerns that are in the system. For this, the
concern management system has to analyse all information from different mod-
els to identify concerns and the relationships between them (concern analysis in
Fig. 1). Furthermore, the system needs to be able to compose the information
to produce different integrated views (concern composition in Fig. 1). In the
next section, we present the ModelSoC approach for multi-dimensional concern
separation with which concern management systems for MDSD processes can
be designed. An implementation of the approach is presented in Sect. 4 that
provides the tooling to define and use concern management systems in Eclipse.

Concern-based (de)composition of MDSD Processes 5

3 ModelSoC for Multi-Dimensional SoC in MDSD

In this section, we introduce ModelSoC: an approach to design MDSD processes
based on concern separation and composition.

The hyperspace model for SoC of Ossher and Tarr [10] supports the decom-
position of a system into concerns along several concern dimensions. These span
up an n-dimensional space—a hyperspace—where n is the number of utilised con-
cern dimensions. Implementation artifacts are perceived as consisting of units.
Each unit realises at most one concern in each concern dimension which is de-
fined in a concern mapping that maps units to concerns. Units are composed
into hyperslices and hypermodules. A hyperslice composes all units belonging to
one concern. Hypermodules compose several hyperslices to a complete software
module or program. The hyperspace model leaves it open, what exactly can be
treated as unit, how concern mappings and hypermodules are specified and how
the actual composition of a system from units is performed. The implementation
Ossher and Tarr provide is Hyper/J [10], which supports different types of Java
fragments as units (e.g., statements). It contains a dedicated language for con-
cern mapping as well as a language for hyperslice and hypermodule definitions.
Such definitions do not only enumerate concerns to compose, but also include
calls to operators for composing Java units by bytecode weaving.

Since the conceptual hyperspace model is independent of an implementation
language, it can be used to separate concerns in models in an MDSD process, as
the one shown in Sect. 2. As concern, we regard a piece of information about the
system which does not require further decomposition. Examples of concerns are
(a) Customer participates in Book Ticket (b) Bank participates in Book Ticket
or (c) Account is exchanged between Customer and Bank. Concerns that follow
the same (de)composition concept belong to the same concern dimension. For
instance, a new actor is composed into a use case by adding it to a use case
model. This works similar for all actors, thus both concerns (a) and (b) belong
to the concern dimension Participation. On the contrary, a new value exchange
is added by stating for a value which actor owns it before and which after use
case execution (cf., value added invariant in Sect. 2). Thus, (c) follows different
(de)composition rules and belongs to another concern dimension (Exchange).

We identified three properties of MDSD that are difficult to map to the hy-
perspace model as it is, because they are either not considered by the model or
further refine parts of the model that were left open [10]. First (Sect. 3.1), the
hyperspace model does not consider that the same information may be present
in multiple formats (e.g., same class in UML and Java). Second (Sect. 3.2), au-
tomated transformation of information is not covered by the hyperspace model.
Third (Sect. 3.3), a refinement of the hyperspace model is that we want to forbid
fixed concern mapping or hypermodule specification languages (as it is the case
in Hyper/J). This is, because languages that are included in an MDSD process
should be chosen based on the needs of the system’s domain, which would not
be given if a technology enforces the inclusion of a predefined mapping or mod-
ule language. Therefore, ModelSoC introduces the following three concepts as
extensions and refinements of the hyperspace model.

6 Jendrik Johannes and Uwe Aßmann

Integration
Points

IP1 : Document IP1 : uml::UseCase IP1 : FlowModel IP1 : java::Method

Units

Integration
Points IP2 : Document IP2 : uml::UseCase IP2 : FlowModel IP2 : java::Method

Units

(a)

(b)

{
{

Bindings

BookTicket
Actor(s):

Actor(s):
 Customer

public class BookTicket {
 public void start() {
 }
}

 new Customer();

Fig. 2. Multi-format units: (a) Customer participates in Book Ticket (b) Book Ticket

3.1 Multi-Format Units: Realisation of concerns in different formats

A fragment of a model that represents a certain concern is a unit (in the sense
of [10]). Since there may be different viewpoints on the same concern in MDSD
(e.g., in Fig. 1, information about actors and use cases is present in multiple
views) there can be several units representing the same concern in different
formats. We introduce the multi-format unit concept that bundles such units.
As an example, consider Fig. 2 that shows the multi-format unit that realises
the concerns Book Ticket and Customer participates in Book Ticket. To obtain
a view that shows certain concerns, one has to select a viewpoint (e.g., UML use
case) and if the format of the viewpoint is supported by all multi-format units
that realises the corresponding concerns, the view can be composed. Hence, each
multi-format unit supports a set of viewpoints, but not each multi-format unit
needs to support all viewpoints used in an MDSD process. The viewpoint that
is the final system (Java in the example), is most likely supported by all multi-
format units. If support for a new viewpoint is needed for a multi-format unit,
it can be added to without altering the existing units (i.e., existing viewpoints)
in the multi-format unit (see also Sect. 3.2 below).

A multi-format unit offers integration points and bindings between them to
guide concern composition. Each unit has to support the integration points.
This is comparable to the joinpoint concept [16]. Each unit offers its own version
of the points typed by metaclasses of the metamodel for the unit (cf., Fig. 2).
Thus, integration points can be defined on the metamodel of a unit (cf., Sect. 3.3
below). Since a unit may need integration along several concern dimensions, the
set of integration points is not fixed but can be extended, when a new concern
dimension needs to be supported. For example, the concern Book Ticket in the
concern dimension UseCase (Fig. 2b) can exist on its own without the need
for integration points because the concern dimension UseCase is independent
of other concern dimensions. The concern Customer participates in Book Ticket
in the concern dimension Participation (Fig. 2a) requires integration with Book
Ticket since the Participation depends on the UseCase dimension. Therefore, the
multi-format unit for Customer participates in Book Ticket defines integration
points for its own units and the units of Book Ticket and binds them.

Concern-based (de)composition of MDSD Processes 7

P1 : StringParameters

Integration
Points

IP1 : Document IP1 : uml::UseCase IP1 : FlowModel IP1 : java::Method

Unit
Prototypes

IP2 : Document IP2 : uml::UseCase IP2 : FlowModel IP2 : java::Method
Integration
Points

Actor(s):
 NAME_SLOT

NAME_SLOT

 new NAME_SLOT();

Fig. 3. Multi-format unit prototype for Participation concern dimension

3.2 Multi-Format Unit Prototypes: Automating unit creation

It is not practical to create each unit of a multi-format unit manually. Rather,
following the MDSD idea, units holding the same information should be created
automatically. We note that different concerns of the same dimension have sim-
ilar structure. For example, the multi-format unit realising the concern Bank
participates in Book Ticket looks similar as the multi-format unit of Customer
participates in Book Ticket shown in Fig. 2a (only the string Customer should
be exchanged for Bank in each unit).

We can use this similarity to abstract a multi-format unit to a multi-format
unit prototype that defines a common structure for all concerns of one concern
dimension. For this, we create one unit prototype for each format supported by
the multi-format unit prototype. A unit prototype is a small template, that offers
parameters for the parts that differ between units of the same concern dimension.

Figure 3 shows the multi-format unit prototype for the Participation concern
dimension. It has one parameter P1 for the actor name. A multi-format unit
prototype can be instantiated to a multi-format unit by binding each parameter
with a value (e.g., P1 can be bound to Customer in Fig. 3 to obtain Fig. 2a)
and integration points with each other. Integration points exist in a multi-format
unit prototype, but not the concrete bindings, because these integrate individual
concerns. Since the parameter P1 is of the primitive type String, it is similar for
all units. A parameter may also have a complex type that can differ for different
views. In that case, different versions of a value are needed to bind the parameter.
Integration points are always individually bound for each unit.

3.3 Meta-level concern mappings and compositions

Figure 4 shows details of a concern management system for MDSD processes (cf.,
Fig. 1b) using the concepts introduced above. The figure illustrates that each
concern dimension (a) has a multi-format unit prototype (b). The instantiation
of prototypes (c), which includes binding of parameters and integration points
between individual concerns, spans up the concern space (d). Having this space
available, a viewpoint can be selected (e) which reduces multi-format units to
normal units (f). By interpreting the bindings, these units can be composed (g)
to an integrated view in the selected viewpoint (h). Such a view corresponds to
a hyper module in the sense of [10].

Once the concern space has been established, steps (d) to (h) can be per-
formed by a universal composition technology for any concern management sys-

8 Jendrik Johannes and Uwe Aßmann

concern spaceconcern
dimensions

multi-format
unit prototype

multi-format
unit prototype

multi-format
unit

multi-format
units

multi-format
units

in
st

a
n
ti

a
ti

o
n

multi-format
unitunits

units

v
ie

w
p
o
in

t
se

le
ct

io
n

decomposed
view

v
ie

w

co
m

p
o
si

ti
o
n

composed
view

co
n
ce

rn
d
im

e
n
si

o
n
 X

co
n
ce

rn
d
im

e
n
si

o
n
 Y

composed
model

(a) (b) (d)(c) (f)(e) (h)(g)

Fig. 4. Structure of a concern management system for an MDSD process (cf., Fig. 1b)

tem. Steps (a), (b) and (c) however, which cover the concern analysis phase (cf.,
Fig. 1b), require configuration for each MDSD process. Concretely, mechanisms
are required to (a) define concern dimensions as well as integration points and
parameters of the concerns in the dimensions, (b) define multi-format unit pro-
totypes with integration points and parameters, (c) define how parameter and
integration point binding information is extracted.

(a) Concern dimensions, concern parameters and concern integration points
can be defined independently of models and metamodels for an MDSD process.

(b) Multi-format unit prototypes can be defined by modelling each unit proto-
type as a model fragment in the corresponding modelling language using an exist-
ing model editor (cf., Fig. 3). Parameters and integration points can be specified
for each unit prototype based on the prototype’s metamodel. For example, the
rules for IP1 must state that in the UML use case format an actor is connected to
a use case by adding it to the use case’s uml::Package and for the Java format by
adding the actor instantiation statement to the java::Method realising the use
case execution. Rules for the parameter P1 must state that uml::Actor.name
represents the parameter in the UML format and java::Variable.name repre-
sents it in the Java format. These rules effectively define the concern mappings.
By assigning the model fragments and rules that make up a multi-format unit
prototype to the corresponding concern dimension defined in (a), we know to
which dimension the instances of the prototype belong.

(c) Concern composition information is available in the user-defined models
(Fig. 1b left). In the example, the information that Customer, Bank and Clerk
participate in BookTicket is given in the BookTicket OpenOffice model and that
Hall participates in BookTicket is given in the Hall UML model. This informa-
tion can be extracted by rules based on the metamodels of the languages used.
For instance, one rule must specify that each OpenOffice document instanti-
ates the multi-format unit of the UseCase concern dimension and parameterises
it with the name of the document. Furthermore, another rule must state that
each mention of an actor in the document instantiates the multi-format unit
prototype of the Participation dimension (cf., Fig. 3) and composes it with the
corresponding use case. This effectively forms the composition script for hyper-
modules. By assigning the rules for extracting the concern instantiation and
composition information to a concern dimension defined in (a), we know which
multi-format unit prototype to instantiate, which integration points to address
and which parameters to fill with the extracted information.

Concern-based (de)composition of MDSD Processes 9

4 Implementation based on Reuseware

In this section we describe the implementation of ModelSoC with Reuseware [11].
Reuseware is an Eclipse-integrated tool that implements Universal Invasive Soft-
ware Composition for Graph Fragments (U-ISC/Graph). ISC [17] is a program
transformation approach that offers basic composition operators which can be
combined to support the composition of different types of components. It is
suited to realise complex and cross-cutting composition needs that arise when
compositions along multiple dimensions are performed. With U-ISC [18], ISC-
based composition systems can be created for arbitrary grammar-based lan-
guages with tooling that executes composition by merging syntax tree fragments.
In U-ISC/Graph, we extended U-ISC to support languages defined by metamod-
els and work with graph fragments (i.e., model fragments). The first part of this
work was presented in [19], where we only considered single modelling languages
out of context of an MDSD process. In this paper, U-ISC/Graph is used to
its full extent to realise ModelSoC. With U-ISC/Graph, one can define for an
MDSD process (cf., Sect. 3.3): (a) concern dimensions with integration points
and parameters, (b) multi-format unit prototypes and (c) concern composition
rule extraction. These definitions are interpreted by Reuseware which then acts
as concern management system for the MDSD process that can be used inside
Eclipse in combination with Eclipse-based model editors.

(a) In Reuseware, we can specify composition systems that we use to rep-
resent concern dimensions. Listing 1 (cf., [11] for notation) shows the composi-
tion system for the Participation concern dimension. The specification declares
fragment roles, which we use to model the types of concerns of a dimension.
Listing 1 declares the fragment roles Participant (which can be an actor) and
Collaboration (which can be a use case). A fragment role holds a set of static
ports that we use to declare integration points (IP1 and IP2 in the example)
and parameters (P1 in the example). Ports can be connected with associations,
which define whether two ports are compatible (IP1 and IP2 in the example).

(b) To put a composition system into use, it needs to be connected to a
modelling language. This is done by specifying a component model that connects
the concepts of the composition system with the concepts of the language using
its metamodel (as shown in Listing 2; cf., [11] for notation). To define multi-
format unit prototypes, we define each unit prototype in its languages using
a suitable existing model editor and then use component models to identify
parameters and integration points and relate them to a composition system
and therewith to a concern dimension. For this, each port (i.e., parameter and
integration point) is mapped to metaclasses of the metamodel, as shown for UML
in Listing 2. The keywords slot, hook, anchor and prototype represent different
types of addressable points in model fragments that are modified when fragments
are invasively composed (cf., [19] for details). When these mapping rules are
applied to the multi-format unit prototype of the Participation and UseCase
dimensions (cf., Fig. 3), the parameters and integration points are identified.

(c) Component model specifications define where fragments can be inte-
grated. On the contrary, composition language specifications help with defining

10 Jendrik Johannes and Uwe Aßmann

which fragments are integrated. A composition language specification (shown in
Listing 3; cf., [11] for notation) allows to use a modelling language as composition
language. That is, it contains rules to extract information from models on which
fragments are parameterised and integrated. For instance, Listing 3 defines that
for each part of an OpenOffice document marked with the SpanType Actor, a new
actor fragment is instantiated with the P1 parameter bound to the name of the
actor (extracted from the document with OCL query self.mixed->at(1).getValue();
Line 5). Furthermore, we define that the binding of IP1 and IP2 is performed
between the correct Participants and Collaborations by extracting the cor-
responding actor and use case names from the model and its ID (Lines 10/11).

With specifications given for all concern dimensions and viewpoints of a
MDSD process, Reuseware acts as the concern management system (cf., Fig. 4)
for that process. For this, Reuseware interprets the specifications to derive a
composition program that represents the complete concern space (d) by showing
concerns and relations between them as parameterised and linked unit proto-
types. In fact, Reuseware can visualise composition programs graphically with a
notation similar to the one used in step (d) in Fig. 4 (boxes with attached circles
and lines between them; cf., [19]). To execute a composition program, Reuseware
automatically selects suitable composition operators based on the metamodel of
the involved units and therefore no further configuration is required for (e) to (h).
Reuseware automatically executes the composition for all supported viewpoints
by creating a composed model for each. The developer can decide at which view
to look by opening a composed model in an editor of his or her choice.

1 fragment role Participant { fragment role Collaboration {
2 static port IP1; /*an integration point*/ static port IP2; /*an integration point*/
3 static port P1; /*a parameter*/
4 } }
5 contributing association Participation { Participant.IP1 --> Collaboration.IP2 }

Listing 1. (a) Composition system for concern dimension Participation

1 fragment role Participant { fragment role Collaboration {
2 port IP1 { port IP2 {
3 uml::Actor is prototype {} uml::Package.packagedElement is hook {}
4 uml::Association is prototype {}
5 uml::Association.ownedEnd is slot {} uml::UseCase is anchor {}
6 } }
7 port P1 {uml::Actor.name is value hook {}}
8 } }

Listing 2. (b) Parameter and integration point spec. for UML unit of Participation

1 fragment role Participant {
2 odftext::SpanType if $styleName = ’Actor’$ {
3 fragment = $’Participant:’.concat(self.mixed->at(1).getValue())$
4 ID = $Sequence{’lib’,’participation’,’Participant.’.concat(view)}$
5 port P1 { $self.mixed->at(1).getValue()$ }
6 }
7 }
8 association Participation {
9 odftext::SpanType if $styleName = ’Actor’$ {

10 fragment = $’Participant:’.concat(self.mixed->at(1).getValue())$ -->
11 fragment = $’UseCase:’.concat(ID.trimExtension().segment(-1))$
12 }
13 }

Listing 3. (c) Concern composition (Participation) extraction rules for OpenOffice

Concern-based (de)composition of MDSD Processes 11

5 Example Realisation and Discussion

To evaluate ModelSoC, we (1) defined the MDSD process introduced in Sect. 2
with Reuseware and (2) used it to develop a first version of the ticket shop system
with the features book ticket and change seat. Afterwards, (3) we extended the
MDSD process defined in (1) with a new viewpoint and concern dimension for
security and used that to define security properties of the ticket shop system
without changing the models defined in (2).

(1) MDSD process definition Our MDSD process supports five different
viewpoints as introduced in Sect. 2. Four of these viewpoints are used for refine-
ment (i.e., manual modelling), while the UML class viewpoint is only for analysis
(i.e., it gives an overview of all classes that appear in Java code, but does not
support modification). We identified 11 concern dimensions that we defined as
composition systems (cf., Listing 1). The average size of these specifications is
16 LOC. Each viewpoint can show concerns of certain concern dimensions as
presented on the left side of Fig. 5. To add support for a concern dimension
to a viewpoint, a unit prototype (created with a normal model editor) and one
component model (cf., Listing 2) was defined (23 in total; average size 26 LOC).
Four viewpoints support editing of concerns (i.e., instantiation of unit proto-
types) shown on the right side of Fig. 5. To add editing support for a concern
dimension to a viewpoint, a composition language specification (cf., Listing 3)
was written (15 in total; average size 37 LOC). Note that, as expected in model-
driven development, certain concerns are created automatically. For instance, a
class is created for an actor as soon as it appears in some use case and therefore
the OpenOffice viewpoint influences the class dimension. All marks on the right
side of Fig. 5 that have no counterpart on the left side identify such situations.
Also, some concerns are shown but are not editable in the corresponding view-
point (e.g., actors can not be changed in Java). All marks on the left side that
have no counterpart on the right side identify these.

If one wants to use ModelSoC for its own MDSD process, one has to write
Reuseware specifications as discussed above. This is a metamodelling task which
is done instead of writing model transformations. Compared to traditional model
transformations, Reuseware specifications are very modular as indicated by the
small number of LOCs of the specifications in this example. This is not be-
cause the demonstrator system we developed with the process (discussed next)
is relatively small—the process itself can be used to develop larger systems.

(2) MDSD process usage Once the MDSD process is set up with Reuse-
ware, developers can use existing model editors to edit and view different view-
points. For composed views that are graphical, Reuseware also performs layout
composition [20] in addition to composing the semantic information. Preserving
layout between views helps developers to relate views to each other. Because
of traceability issues, such layout preservation is often not well supported in
transformation chain MDSD processes. Furthermore, developers can make mis-
takes which lead to inconsistencies that are discovered by Reuseware (e.g., use
UML to add an actor to a use case for which no OpenOffice document exists).
These errors are annotated to the source models of the error using Eclipse’s error

12 Jendrik Johannes and Uwe Aßmann

u
se

ca
se

p
a
rt

ic
ip

.
ex

ch
a
n
g
e

fl
ow

tr
ig

g
er

fa
ct

o
ry

cl
a
ss

d
a
ta

cl
a
ss

a
ss

o
ci

a
te

ty
p
eb

in
d
.

a
p
p

se
cu

ri
ty

u
se

ca
se

p
a
rt

ic
ip

.
ex

ch
a
n
g
e

fl
ow

tr
ig

g
er

fa
ct

o
ry

cl
a
ss

d
a
ta

cl
a
ss

a
ss

o
ci

a
te

ty
p
eb

in
d
.

a
p
p

se
cu

ri
ty

OpenOffice x x x x x x x x

UML use case x x x x x x x x x x

Value Flow x x x x x x

UML class x x x

Java x x x x x x1 x x x x x x2

SecProp x x x x2 x

Fig. 5. Left side: viewpoints (y-axis) supported by concern dimension (x-axis); Right
side: modelling languages used to model (y-axis) in concern dimension (x-axis) (1factory
concerns have complex parameters defined for Java format only; 2security concerns
have complex parameters defined individually for SecProp and Java formats)

marking mechanism. If the model editor used supports this mechanism well, the
developer will most likely understand the error. However, this is not the case for
all editors and sometimes external editors (e.g., OpenOffice) are used. Therefore,
improving tool support and integration for error reporting and debugging is part
of future work. Realising the MDSD process following ModelSoC, we are able to
track information that is replicated in, scattered over, and tangled in different
integrated views. A drawback of our approach, as presented now, is that the inte-
grated views can not be edited directly. Rather, small models are edited and the
integrated views are created immediately for inspection. Since tracing—which is
already used for layout preservation—is simple with the explicit concern space
representation, we believe that editable views can be realised by using a round-
trip mechanism that propagates changes from the integrated views back. Such
a mechanism could even allow editing information in a different viewpoint as it
was defined in. We presented first successful results in this direction in [21].

While we implemented only two features of a demonstrator system with the
MDSD process defined above (1), this process can be used to continue develop-
ment on this or other (possible much larger) systems. For this, no modification
of the process setup from (1) is required. Also for other MDSD processes, parts
from (1) can be reused due to high modularity—each concern dimensions can
be reused individually. (1) can also be flexibly extended as discussed next.

(3) MDSD process extension To support our claim that ModelSoC sup-
ports flexible extension of an MDSD process, we extended our process (1) with
a new concern dimension for security—after the two functional features were de-
veloped. Security is usually a cross-cutting concern that effects several places in
a system. For modelling security information, we employed the DSML SecProp3,
to define access rights and encryption needs of the business objects in the system.
This DSML was motivated by a DSML that was developed by an industrial part-
ner in a case study in the Modelplex project [22]. There we applied our approach
to add a security viewpoint to a system otherwise modelled with UML only. To
allow the security modeller to see existing values that need security properties,
3 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_SecProp

Concern-based (de)composition of MDSD Processes 13

the information from the concern dimensions Usecase, Participation and Ex-
change needed to be transported to the SecProp viewpoint. This was done by
adding new unit prototypes (defined in SecProp) to the corresponding concern
dimensions (cf., Fig. 5 bottom). A multi-format unit prototype for the security
dimension was introduced supporting the SecProp and Java viewpoints. To al-
low integration with other dimensions, new integration points were added to the
Exchange unit prototypes in SecProp and Java (by specifying a new component
model; no changes to the existing specifications or Java fragments were required).

Due to the given space limitations, we cannot give more details about the
example here. The complete example can be found online4. On the website, there
are instructions on how to install Reuseware and the modelling tools used in the
example. With this, all details of the example can be inspected by the interested
reader. The site also contains visualisations of the concern space for the example.

6 Related Work

Many traditional SoC approaches are limited in so far that they can only be
combined with object-oriented languages (role modelling [23], aspect-oriented
programming [16] or Composition Filters [8]). In case of the hyper space model
[10], only the implementation Hyper/J is limited to Java, but the model itself
can be used with arbitrary languages. Thus, we used it as basis for ModelSoC.

More generic SoC approaches exist in the AOM [4] area. The Theme ap-
proach [5] for AO analysis and design works with UML and requirement speci-
fications. However, it is limited to these and enforces the usage of a predefined
specification language for Themes (i.e., concern mappings). More approaches
that are limited to UML and do not consider other DSMLs are discussed in [24].

In the RAM [25] approach, different concerns are modelled in aspects where
each aspect contains three views (structural, state, message) modelled with UML
class, state and sequence models. Thus, an aspect in RAM can be seen as a multi-
format unit supporting three different viewpoints, but no new viewpoints can be
added which hinders the integration of DSMLs or GPLs such as Java.

RAM makes use of the AOM tools Kompose [9] and GeKo [26] that can be
configured by metamodels and thus can be, similar to Reuseware, used with ar-
bitrary DSMLs. They are specialised for each metamodel individually, while in
Reuseware the composition system concept allows us to define concern dimen-
sions and relate them to different metamodels which we required for ModelSoC.

AOSD with use cases [6] is related to our example where use case decompo-
sition is one concern dimension. However, we support arbitrary dimensions.

A recent study [27] discusses whether aspect weaving should be performed on
models or code. This is motivated by the fact that some approach perform model
weaving ([9, 26]), while others offer translations to aspect (e.g., Aspect/J [7]) code
([5, 6]). In our approach, weaving is performed with Reuseware for any viewpoint.
While weaving on code level is mandatory to obtain the final system, weaving
for other viewpoints can be supported if it aids development.
4 http://www.reuseware.org/index.php/Reuseware_ModelSoC

14 Jendrik Johannes and Uwe Aßmann

In MDSD, many approaches support model transformation and manipulation
(e.g., QVT [28], ATL [29], Epsilon [30] or SDM [31]). They relate to ModelSoC
in two ways: First, all approaches named above give possibilities to declare rules
that consist of three parts: (1) a pattern to match, (2) a template-like structure
to produce, (3) and a mapping to insert matched data into the template. These
three components are also found in ModelSoC. (1) is the concern analysis (2) are
the unit-prototypes and (3) is the concern composition. We allow, compared to
the other approaches, for independent reuse of (1) and the specification of (3) in
concrete syntax. Second, model transformations can be used as basis technology
to implement ModelSoC. Reuseware itself is implemented with SDM.

UniTI [32], MCC [33], TraCo [34] and Megamodelling [35] organise MDSD
processes by defining relations between models, metamodels and transforma-
tions. Compared to ModelSoC, they mainly use transformations as composition
methodology. Still, ModelSoC could be used as part of a larger MDSD process
and integrated with other model manipulations by one of these approaches. Fi-
nally, any MDSD approach and technology can potentially be combined with
our approach, since the specifications and composition programs (which repre-
sent the concern space) in Reuseware are models with a well defined metamodel.

7 Conclusion

In this paper we presented ModelSoC, an approach to organise MDSD processes
by concern (de)composition, and an implementation of it. ModelSoC enables
universal separation of concerns in MDSD processes that involve arbitrary mod-
elling languages and does not enforce the usage of predefined languages. It thus
does not limit the strength of MDSD to utilise DSMLs for different viewpoints
in development. Our implementation monitors the consistency of all models of
the system and provides a complete view of all concerns and their relationships
at each point in time. ModelSoC allows for independent modification and ex-
tension of each concern dimension, thus allowing MDSD processes to evolve. We
illustrated this on the model-driven development of a demonstrator system.

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work, 2nd Edition. Pearson Education (2009)

2. ECMFA Traceability Workshop Organisers: ECMFA Traceability Workshop Series.
http://www.modelbased.net/ecmda-traceability (2010)

3. Filman, R.E., Elrad, T., Clarke, S., Akşit, M., eds.: AOSD. Addison-Wesley (2005)
4. Workshop on Aspect-Oriented Modeling Organisers: Workshop on Aspect-Oriented

Modeling (AOM) Series. http://www.aspect-modeling.org (2010)
5. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-

proach. Addison-Wesley (April 2005)
6. Jacobson, I., Ng, P.W.: AOSD with Use Cases. Addison-Wesley (2004)
7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

Overview of AspectJ. In: Proc. of ECOOP’01. LNCS, Springer (2001)

Concern-based (de)composition of MDSD Processes 15

8. Bergmans, L., Aksit, M.: Composing Crosscutting Concerns Using Composition
Filters. ACM 44(10) (2001) 51–57

9. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach For Automatic
Model Composition. In: Proc. of AOM @ MODELS’07. LNCS, Springer (2007)

10. Ossher, H., Tarr, P.: Multi-Dimensional Separation of Concerns and The Hyper-
space Approach. In: Proc. of Symp. on SWArch. and CompTechn., Kluwer (2000)

11. Software Technology Group, Technische Universität Dresden: Reuseware Compo-
sition Framework. http://reuseware.org (2010)

12. IBM: Concern Manip. Environment. sourceforge.net/projects/cme (2006)
13. Roussev, B., Wu, J.: Transforming Use Case Models to Class Models and OCL-

Specifications. Int. Journal of Computers and Applications 29(1) (2007) 59–69
14. Eclipse: UML2 metamodel. eclipse.org/modeling/mdt/?project=uml2 (2010)
15. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between

Modelling and Java. In: Proc. of SLE’09. LNCS, Springer (March 2010)
16. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Proc. of ECOOP’97, Springer (1997)
17. Aßmann, U.: Invasive Software Composition. Springer (April 2003)
18. Henriksson, J.: A Lightweight Framework for Universal Fragment Composition—

with an application in the Semantic Web. PhD thesis, TU Dresden (January 2009)
19. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-

Independent Model Modularisation. In: TAOSD VI. LNCS, Springer (2009)
20. Johannes, J., Gaul, K.: Towards a Generic Layout Composition Framework for

Domain Specific Models. In: Proc. of DSM’09 at OOPSLA. (2009)
21. Johannes, J., Samlaus, R., Seifert, M.: Round-trip Support for Invasive Software

Composition Systems. In: Proc. of SC’09. Volume 5634 of LNCS., Springer (2009)
22. Modelplex: D1.1.a (v3): Case Study Scenario Definitions. modelplex.org (2008)
23. Steimann, F.: On the representation of roles in object-oriented and conceptual

modelling. Data & Knowledge Engineering 35(1) (2000) 83–106
24. Schauerhuber, A., Retschitzegger, W., Kappel, G., Kapsammer, E., Wimmer, M.,

Schwinger, W.: A Survey on AOM Approaches. Technical report, JKU Linz (2006)
25. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:

Proc. of AOSD’09, ACM (2009) 87–98
26. Morin, B., Klein, J., Barais, O., Jézéquel, J.M.: A Generic Weaver for Supporting

Product Lines. In: Proc. of EA’08, ACM (2008) 11–18
27. Hovsepyan, A., Scandariato, R., Van Baelen, S., Berbers, Y., Joosen, W.: From

Aspect-Oriented Models to Aspect-Oriented Code? In: AOSD ’10, ACM (2010)
28. Object Management Group: Meta Object Facility 2.0 Query/View/Transformation

(QVT). http://www.omg.org/cgi-bin/doc?formal/08-04-03 (2008)
29. Eclipse: ATLAS Transformation Language. eclipse.org/m2m/atl (2010)
30. Kolovos, D.S.: An Extensible Platform for Specification of Integrated Languages

for Model Management. PhD thesis, University of York (2008)
31. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph

Rewrite Language Based on the UML and Java. In: TAGT’98, Springer (2000)
32. Vanhooff, B., Ayed, D., Baelen, S.V., Joosen, W., Berbers, Y.: UniTI: A Unified

Transformation Infrastructure. In: Proc. of MODELS’07. LNCS, Springer (2007)
33. Kleppe, A.: MCC: A Model Transformation Environment . In: Proc. of ECMDA-

FA’06. Volume 4066 of LNCS., Springer (2006) 173–187
34. Heidenreich, F., Kopcsek, J., Aßmann, U.: Safe Composition of Transformations.

In: Proc. of ICMT’10. LNCS, Springer (June 2010)
35. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proc. of

Best Practices for MDSD workshop. (2004)

